[1]任立敏,王伟东,杜志江.移动机器人队形控制关键技术及其进展[J].智能系统学报,2013,8(05):381-394.[doi:10.3969/j.issn.1673-4785.201302011]
 REN Limin,WANG Weidong,DU Zhijiang.Key technologies and development of formation control of mobile robots[J].CAAI Transactions on Intelligent Systems,2013,8(05):381-394.[doi:10.3969/j.issn.1673-4785.201302011]
点击复制

移动机器人队形控制关键技术及其进展(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第8卷
期数:
2013年05期
页码:
381-394
栏目:
出版日期:
2013-10-25

文章信息/Info

Title:
Key technologies and development of  formation control of mobile robots
文章编号:
1673-4785(2013)05-0381-14
作者:
任立敏12王伟东1杜志江1
1.哈尔滨工业大学 机器人技术与系统国家重点实验室,黑龙江 哈尔滨 150080; 2.北华大学 机械工程学院,吉林 吉林 132021
Author(s):
REN Limin 12 WANG Weidong  1 DU Zhijiang 1
1. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China; 2. College of Mechanical Engineering, Beihua University, Jilin 132021, China
关键词:
移动机器人多机器人队形控制关键技术发展现状
Keywords:
mobile robot multi-robot formation control key technology present development
分类号:
TP242.6
DOI:
10.3969/j.issn.1673-4785.201302011
文献标志码:
A
摘要:
在明确了多机器人队形控制国内外发展现状的基础上,以地面移动机器人为研究对象,从系统结构、机器人模型、队形形状表示方法、参考框架及编队控制策略等方面,对多机器人编队控制的研究成果进行了概述.同时,对队形形状生成、编队跟踪与协调、队形变换与重组以及编队避障等队形控制子问题的国内外研究近况进行了总结和分析.最终指出:研究统一有效的编队控制框架、障碍环境下的队形优化变换、降低系统对通讯能力的要求以及编队控制在实际物理环境下的应用是移动机器人队形控制领域未来可能的研究主题.
Abstract:
On the basis of defining the present development of multi-robot formation control at home and abroad, with ground mobile robots as the research object, the research achievements on the multi-robot formation control are described in aspects of system structure, robot model, the formation shape representation method, reference frame and formation control strategy. In addition, the present domestic and foreign researches on such sub-problems of formation control as the generation of formation shape, formation tracking and coordination, formation change, recombination and formation, obstacle avoidance are also summarized and analyzed. It is pointed out finally that the uniform and effective formation control frame, formation optimization and change in the obstacle environment, reducing system requirements on communication and the application of formation control in the actual physical environment are the future possible research topics.

参考文献/References:

[1]CAO Y U, FUKUNAGA A S, KAHNG A B, et al. Cooperative mobile robotics: antecedents and directions              [C]// Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Pittsburgh, USA, 1995, 1: 226-234.
[2]原魁,李园,房立新.多移动机器人系统研究发展近况[J].自动化学报, 2007, 33(8): 785-794. 
        YUAN Kui, LI Yuan, FANG Lixin. Multiple mobile robot systems: a survey of recent work[J].Acta Automatica Sinica, 2007, 33(8): 785-794.
[3]WANG Guanghua, LI Deyi, GAO Wenyan, et al. Study on formation control of multi-robot systems[C]//2013 Third International Conference on Intelligent System Design and Engineering Applications. Hong Kong, China, 2013: 1335-1339.
[4]CHEN Yangquan, WANG Zhongmin. Formation control: a review and a new consideration[C]//Proceedings of the International Conference on Intelligent Robots and Systems. Edmonton, Canada, 2005: 3181-3186.  
[5]KANJANAWANISHKUL K. Formation control of mobile robots: survey[EB/OL]. [2012-06-26]. http://web.eng.ubu.ac.th/~seminar/research/Journal/4_1/06.pdf.
[6]苏治宝,陆际联.多移动机器人队形控制的研究方法[J].机器人, 2003, 25(1): 88-91.
        SU Zhibao, LU Jilian. Research approach to formation control of multiple robots[J]. Robot, 2003, 25(1): 88-91.[7]任德华,卢桂章.对队形控制的思考[J].控制与决策,2005, 20(6): 601-606.
        REN Dehua, LU Guizhang. Research thinking in formation control[J]. Control and Decision, 2005, 20(6): 601-606.[8]杨甜甜,刘志远,陈虹,等.移动机器人编队控制的研究现状与问题[J].智能系统学报, 2007, 2(4): 21-27.
        YANG Tiantian, LIU Zhiyuan, CHENG Hong, et al. Formation control of mobile robots: state and open problems[J]. CAAI Transactions on Intelligent Systems, 2007, 2(4): 21-27.
[9]MARIOTTINI G L, PAPPAS G, PRATTICHIZZO D, et al. Vision based localization of leader-follower formations[C]//Proceedings of the 44th Conference on Decision and Control, and the European Control Conference. Seville, Spain, 2005: 635-640.
[10]HUANG Jiangyang, FARRITOR S M, QADI A, et al. Localization and follow-the-leader control of a heterogeneous group of mobile robots[J]. IEEE/ASME Transactions on Mechatronics, 2006, 11(2): 205-215.    
[11]CRUZ C D, CARELLI L R. Dynamic model based formation control and obstacle avoidance of multi-robot systems[J]. Robotica, 2008, 26(3): 345-356.
[12]MEHRJERDI H, SAAD M, GHOMMAM J. Hierarchical fuzzy cooperative control and path following for a team of mobile robots[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(5): 907-917.
[13]KEVICZKY T, BORELLI F, BALAS G. Decentralized receding horizon control for large scale dynamically decoupled systems[J]. Automatica, 2006, 42(12): 2105-2115.
[14]KEVICZKY T, BORRELLI F, FREGENE K, et al. Decentralized receding horizon control and coordination of autonomous vehicle[J]. IEEE Transactions on Control System Technology, 2008, 16(1): 19-32.
[15]REN W, SORENSEN N. Distributed coordination architecture for multi-robot formation control[J]. Robotics and Autonomous Systems, 2008, 56(4): 324-333.
[16]DEFOORT M, KOKOSY A, FLOQUET T W, et al. Motion planning for cooperative unicycle-type mobile robots with limited sensing ranges: a distributed receding horizon approach[J]. Robotics and Autonomous Systems, 2009, 57(11): 1094-1106.
[17]LEE G, CHONG N Y, Decentralized formation control for small-scale robot teams with anonymity[J]. Mechatronics, 2009, 19(1): 85-105.
[18]RAY A K, BENAVIDEZ P, BEHERA L, et al. Decentralized motion coordination for a formation of rovers[J]. IEEE Systems Journal, 2009, 3(3): 369-381.
[19]MATSUO Y, TAMURA Y. Tree formation multi-robot system for victim search in a devastated indoor space[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Sendai, Japan, 2004: 1071-1076.
[20]FIERRO R, SONG P, DAS A K, et al. A framework for scalable cooperative navigation of autonomous vehicles, Technical Report No. MS-CIS-01-09[R]. Philadelphia, USA: University of Pennsylvania, 2001.
[21]SHAO Jinyan, XIE Guangming, YU Junzhi, et al. Leader-following formation control of multiple mobile robots[C]//Proceedings of the IEEE International Symposium on Intelligent Control. Limassol, Cyprus, 2005: 808-813.[22]CHIO T S, TARN T J. Rules and control strategies of multirobot team moving in hierarchical formation[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Taipei, China, 2003: 2701-2706.[23]HSU H C H, LIU A. Multi-agent based formation control using a simple representation[C]//Proceedings of the IEEE International Conference on Networking, Sensing and Control. Taipei, China, 2004: 276-281.
[24]YAMAGUCHI H. A distributed motion coordination strategy for multiple nonholonomic mobile robots in cooperative hunting operations[J]. Robotics and Autonomous Systems, 2003, 43(4): 257-282.
[25]LIN Z Y, FRANCIS B, MAGGIORE M. Necessary and sufficient graphical conditions for formation control of unicycles[J]. IEEE Transactions on Automatic Control, 2005, 50(1): 121-127.
[26]GHABCHELOO R, PASCOAL A, SILVESTRC C, et al. Nonlinear coordinated path following control of multiple wheeled robots with bidirectional communication constraints[J]. International Journal of Adaptive Control and Signal Processing, 2007, 21(2\\3): 133-137.
[27]GHABCHELOO R, PASCOAL A, SILVESTRC C, et al. Coordinated path following control of multiple wheeled robots with directed communication links[C]//Proceedings of the 44th Conference on Decision and Control, and the European Control Conference. Seville, Spain, 2005: 7084-7089.
[28]JORGE L P P. Formation control for mobile robots: a tracking approach[D]. Albuquerque, USA: University of New Mexico, 2005.
[29]REGMI A. Experimental implementation for mobile robots coordination[D]. Albuquerque, USA: University of New Mexico, 2004.
[30]MURRAYR M, SASTRYS S S. Nonholonomic motion planning: steering using sinusoids[J]. IEEE Transactions on Automatic Control, 1993, 38(5): 700-716.
[31]DONG W J, GUO Y, FARRELI J A. Formation control of nonholonomic mobile robots[C]//Proceedings of the American Control Conference. Minneapolis, USA, 2006: 5602-5607.
[32]LI X H, XIAO J Z, CAI Z J. Backstepping based multiple mobile robots formation control[C]//2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton, Canada, 2005: 1313-1318.
[33]DAS A K, FIERRO R, KUMAR V, et al. A vision-based formation control framework[J]. IEEE Transactions on Robotics and Automation, 2002, 18(5): 813-825.
[34]LEWIS M A, TAN K H. High precision formation control of mobile robots using virtual structures[J]. Autonomous Robots, 1997, 4(4): 387-403.
[35]HANY C H H, LIU A. Multi-agent based formation control using a simple representation[C]//Proceedings of the IEEE International Conference on Networking, Sensing and Control. Taipei, China, 2004: 276-281.
[36]KLODER S, HUTCHINSON S. Path planning for permutation-invariant multi-robot formations[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Barcelona, Spain, 2005: 1809-1814.
[37]SHAO Jinyan, XIE Guanming, YU Junzhi, et al. A tracking controller for motion coordination of multiple mobile robots[C]//2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton, Canada, 2005: 1331-1336.
[38]BALCH T, ARKIN R C. Behavior-based formation control for multi-robot teams[J]. IEEE Transactions on Robotics and Automation, 1998, 14(6): 926-939.
[39]FREDSLUND J, MATARIC M J. A general algorithm for robot formations using local sensing and minimal communication[J]. IEEE Transactions on Robotics and Automation, 2002, 18(5): 837-846.
[40]BARFOOT T D, CLARK C M. Motion planning for formations of mobile robots[J]. Robotics and Autonomous Systems, 2004, 46(2): 65-78.
[41]GE S S, FUA C H. Queues and artificial potential trenches for multi-robot formations[J]. IEEE Transactions on Robotics, 2005, 21(4): 646-656.
[42]HSU H C H, LIU A. Applying various reference types to formation control of mobile robots[J]. Journal of Information Science and Engineering, 2007, 23(5): 1499-1522.
[43]DESAI J P, OSTROWSKI J P, KUMAR V. Controlling formations of multiple mobile robots[C]//Proceedings of the International Conference on Robotics and Automation. Leuven, Belgium, 1998: 2864-2869.
[44]DESAI J P, OSTROWSKI J P, KUMAR V. Modeling and control of formations of nonholonomic mobile robots[J]. IEEE Transactions on Robotics and Automation, 2001, 17(6): 905-908.
[45]LAFFERRIERE G, CAUGHMAN J, WILLIAMS A. Graph theoretic methods in the stability of vehicle formations[C]//Proceedings of American Control Conference. Boston, USA, 2004, 4: 3729-3734.
[46]FAX J A, MURRAY R M. Information flow and cooperative control of vehicle formations[J]. IEEE Transactions on Automatic Control, 2004, 49(9): 1465-1476.
[47]CAO Ming, YU Changbin, ANDERSON B D O. Formation control using range-only measurements[J]. Automatica, 2011, 47(4): 776-781.
[48]DONG Wenjie, GUO Yi. Formation control of nonholonomic mobile robots using graph theoretical methods[M]// GRUNDEL D, MURPHEY R, PARDALOS P, et al. Cooperative systems: control and optimization. Berlin/Heidelberg: Springer, 2007: 369-386.
[49]FALCONI R, SABATTINI L, SECCHI C, et al. A graph-based collision-free distributed formation control strategy[C]//Proceedings of the 18th IFAC World Congress. Milano, Italy, 2011: 6011-6016.
[50]WESSELOWSKI K, FIERRO R. A dualmode model predictive controller for robot formations[C]//Proceedings of the IEEE Conference on Decision and Control. Maui, USA, 2003: 3615-3620.
[51]MICHALSKA H, MAYNE D Q. Robust receding horizon control of constrained nonlinear systems[J]. IEEE Transactions on Automatic Control, 1993, 38(11): 1623-1633.
[52]XIE Feng, FIERRO R. Stabilization of nonholonomic robot formations: a first-state contractive model predictive control approach[J]. Journal of Computing and Information Technology, 2009, 17(1): 37-50.
[53]XIE Feng, FIERRO R. First-state contractive model predictive control of nonholonomic mobile robots[C]//Proceedings of the American Control Conference. Seattle, USA, 2008: 11-13.
[54]CHEN Jian, SUN Dong, YANG Jie, et al. A leaderfollower formation control of multiple nonholonomic mobile robots incorporating recedinghorizon scheme[J]. The International Journal of Robotics Research, 2010, 29(6): 727-747.
[55]DAI Yanyan, LEE S G. The leader-follower formation control of nonholonomic mobile robots[J]. International Journal of Control, Automation, and Systems, 2012, 10(2): 350-361.
[56]SISTO M, GU Dongbing. A fuzzy leader-follower approach to formation control of multiple mobile robots[C]//2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China, 2006: 2515-2520.
[57]BAZOULA A, DJOUAD A M S, MAAREF H. Formation control of multi-robots via fuzzy logic technique[J]. Journal of Computers, Communications and Control, 2008, 3(Suppl.): 179-184.
[58]DIERKS T, JAGANNATHAN S. Neural network output feedback control of robot formations[J]. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, 2010, 40(2): 383-399.
[59]AMOOZGAR M H, ALIPOUR K L, SADATI S H. A fuzzy logic-based formation controller for wheeled mobile robots[J]. Industrial Robot, 2011, 38(3): 269-281.
[60]SCHNEIDER F E, WILDERMUTH D, WOLF H L. Motion coordination in formations of multiple mobile robots using a potential field approach[M]//PARKER L E, BEKEY G, BARHEN J. Distributed autonomous robotic systems 4. Tokyo, Japan: SpringerVerlag, 2000: 306-314. 
[61]LEONARD N E, FIORELLI E. Virtual leaders, artificial potentials and coordinated control of groups[C]//Proceedings of the IEEE Conference on Decision and Control. Orlando, USA, 2001, 3: 2968-2973.
[62]DE GENNARO M C, JADBABAIE A. Formation control for a cooperative multi-agent system using decentralized navigation functions[C]//Proceedings of the American Control Conference. Minneapolis, USA: IEEE, 2006: 1346-1351.[63]FIERRO R, DAS A K, OSTROWSKI J P. Hybrid control of formations of robots[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Seoul, Korea, 2001: 3672-3677.
[64]ZHANG Fumin. Cooperative shape control of particle formations[C]//Proceedings of the IEEE Conference on Decision and Control. New Orleans, USA, 2007: 2516-2521.
[65]OLFATI-SABER R, MURRAY R M. Graph rigidity and distributed formation stabilization of multi-vehicle systems[C]//Proceedings of the IEEE Conference on Decision and Control. Las Vegas, USA, 2002: 2965-2971.
[66]ANDERSON B, YU C, FIDAN B, et al. Rigid graph control architectures for autonomous formations[J]. IEEE Transactions on Control Systems Magazine, 2008, 28(6): 48-63.
[67]BELTA C, KUMAR V. Abstraction and control for groups of robots[J]. IEEE Transactions on Robotics, 2004, 20(5): 865-875. 
[68]MICHAEL N, KUMAR V. Planning and control of ensembles of robots with nonholonomic constraints[J]. International Journal of Robotics Research, 2009, 28(8): 962-975.
[69]HOU S P, CHEAH C C. Multiplicative potential energy function for swarm control[C]//Proceedings of the IEEE International Conference on Intelligent Robots and Systems. St. Louis, USA, 2009: 4363-4368.
[70]FREEMAN R A, YANG P, LYNCH K M. Distributed estimation and control of swarm formation statistics[C]//Proceedings of the American Control Conference. Minneapolis, USA, 2006: 749-755.
[71]HSIEH M A, KUMAR V, CHAIMOWICZ L. Decentralized controllers for shape generation with robotic swarms[J]. Robotica, 2008, 26(5): 691-701.
[72]AGUIAR A P, DACIC D B, HESPANHA J P, et al. Path “following or reference” tracking? An answer relaxing the limits to performance[C]//Proceedings of the IFAC/EURON Symposium on Intelligent Autonomous Vehicles. Lisbon, Portugal, 2004: 1-6.
[73]LIU Shuang, SUN Dong, ZHU Changan. Coordinated motion planning for multiple mobile robots along designed paths with formation requirement[J]. IEEE Transactions on Mechatronics, 2011, 16(6): 1021-1031.
[74]MARIOTTINI G L, MORBIDI F, PRATTICHIZZO D, et al. Leader-follower formations: uncalibrated vision-based localization and control[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Roma, Italy, 2007: 2403-2408.
[75]GU Dongbing, HU Huosheng. A model predictive controller for robots to follow a virtual leader[J]. Robotica, 2009, 27(6): 905-913.
[76]DUNBAR W B, MURRAY R M. Distributed receding horizon control for multi-vehicle formation stabilization[J]. Automatica, 2006, 42(4): 549-558.
[77]DONG W, FARRELL J A. Consensus of multiple nonholonomic systems[C]//Proceedings of the IEEE Conference on Decision and Control. Cancun, Mexico, 2008: 2270-2275.
[78]LAFFERRIERE G, WILLIAMS A, CAUGHMAN J. et al. Decentralized control of vehicle formations[J]. Systems & Control Letters, 2005, 54(9): 899-910.
[79]REN W. Consensus strategies for cooperative control of vehicle formations[J]. IET Control Theory & Applications, 2007, 1(2): 505-512.
[80]SANHOURY I M H, AMIN S H M, HUSAIN A R. Switching between formations for multiple mobile robots via synchronous controller[C]//2012 IEEE 8th International Colloquium on Signal Processing and its Applications. Malacca, Malaysia, 2012: 352-357.
[81]GHABCHELOO R, PASCOAL A, SILVESTRE C, et al. Coordinated motion control of multiple autonomous underwater vehicles[C]//Proceedings of the International Workshop on Underwater Robotics. Genoa, Italy, 2005: 41-50.[82]GHOMMAN J, SAAD M, MNIF F. Formation path following control of unicycle-type mobile robots[J]. Robotics and Autonomous Systems, 2010, 58(5): 727-736.
[83]DO K D. Formation tracking control of unicycle-type mobile robots[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Roma, Italy, 2007: 2391-2396.
[84]XIANG Xianbo, LAPIERRE L, JOUVENCEL B. Guidance based collision avoidance of coordinated nonholonomic autonomous vehicles[C]//Proceedings of the IEEE International Conference on Intelligent Robots and Systems. Taipei, China, 2010: 6064-6069.
[85]MEHRJERDIA H, GHOMMAMB J, SAAD M, Nonlinear coordination control for a group of mobile robots using a virtual structure[J]. Mechatronics, 2011, 21(7): 1147-1155.
[86]MEHRJERDI H, SAAD M, GHOMMAM J, et al. Optimized neuro-fuzzy coordination for multiple four wheeled mobile robots[J]. Information Technology Journal, 2010, 9(8): 557-570.
[87]MEHRJERDI H, SAAD M, GHOMMAM J. Multi mobile robots formation in presence of obstacles[C]//Proceedings of the IEEE International Conference on Mechatronics. Istanbul, Turkey, 2011: 510-515.
[88]DESAI J P. A graph theoretic approach for modeling mobile robot team formations[J]. Journal of Robotic Systems, 2002, 19(11): 5110525.
[89]MCCLINTOCK J, FIERRO R. A hybrid system approach to formation recon-guration in clutter environments[C]//Proceedings of the Mediterranean Conference on Control and Automation. Ajaccio, France, 2008: 83-88.
[90]HAQUE M A, EGERSTEDT M. Decentralized formation selection mechanisms inspired by foraging bottlenose dolphins[C]//Proceedings of the Mathematical Theory of Networks and Systems. Blacksburg, USA, 2008: 1-6.
[91]DI ROCCO M, PANZIERI S, PRIOLO A. Formation control through environment pattern recognition for a multirobot architecture[C]//Proceedings of the 4-th-European Conference on Mobile Robots. Zagreb, Croatia, 2009: 241-246.
[92]KESHMIRI S, PAYANDEH S. A centralized framework to multi-robots formation control: theory and application[C]//2010 International Conference on Collaborative Agents—Research and Development. Berlin/Heidelberg: Springer-Verlag, 2011: 85-98.
[93]JOHNSON E N. Approaches to vision-based formation control[C]//Proceedings of the 43th IEEE International Conference on Decision and Control. Atlantis, Bahamas, 2004, 2: 1643-1648.
[94]OGREN P, LEONARD N E. Obstacle avoidance in formation[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Taipei, China, 2003, 2: 2492-2497.
[95]KEVICZKY T. Coordinated autonomous vehicle formations: decentralization, control synthesis and optimization[C]//Proceedings of the American Control Conference. Minneapolis, USA, 2006: 2022-2027.
[96]杨甜甜,苏治宝,刘进,等.多移动机器人避障编队控制[J].计算机仿真, 2011, 28(9): 215-218.
        YANG Tiantian, SU Zhibao, LIU Jin, et al. Formation control and obstacle avoidance for multiple mobile robots[J]. Computer Simulation, 2011, 28(9): 215-218.
[97]KUPPAN C R M, SINGAPERUMAL M, NAGARAJAN T. Distributed formation planning and navigation framework for wheeled mobile robots[J]. Journal of Applied Sciences, 2011, 11(9): 1501-1509.
[98]HOY M, MATVEEV A S, SAVKIN A V. Collision free cooperative navigation of multiple wheeled robots in unknown cluttered environments[J]. Robotics and Autonomous Systems, 2012, 60(10): 1253-1266.

相似文献/References:

[1]蔡自兴,王 勇,王 璐.基于角点聚类的移动机器人自然路标检测与识别[J].智能系统学报,2006,1(01):52.
 CAI Zi-xing,WANG Yong,WANG Lu.Corner clustering based detection and recognition of natural landmark for mobile robot[J].CAAI Transactions on Intelligent Systems,2006,1(05):52.
[2]杨甜甜,刘志远,陈 虹,等.移动机器人编队控制的现状与问题[J].智能系统学报,2007,2(04):21.
 YANG Tian-tian,LIU Zhi-yuan,CHEN Hong,et al.Formation control of mobile robots: state and open prob lems[J].CAAI Transactions on Intelligent Systems,2007,2(05):21.
[3]张 嵛,刘淑华.多机器人任务分配的研究与进展[J].智能系统学报,2008,3(02):115.
 ZHANG Yu,LIU Shu-hua.Survey of multirobot task allocation[J].CAAI Transactions on Intelligent Systems,2008,3(05):115.
[4]李润伟,蔡自兴,童宇,等.基于ATM的提高狭窄环境探测精度的改进方法[J].智能系统学报,2008,3(04):283.
 LI Run-wei,CAI Zi-xing,TONG Yu.Improving the accuracy of exploring the narrow environment by using ATM[J].CAAI Transactions on Intelligent Systems,2008,3(05):283.
[5]霍成立,谢 凡,秦世引.面向室内移动机器人的无迹滤波实时导航方法[J].智能系统学报,2009,4(04):295.
 HUO Cheng-li,XIE Fan,QIN Shi-yin.A case study in realtime UKFbased navigation for indoor autonomous travel of mobile robots[J].CAAI Transactions on Intelligent Systems,2009,4(05):295.
[6]石志国,王志良,刘冀伟.异构多机器人协作系统研究进展[J].智能系统学报,2009,4(05):377.[doi:10.3969/j.issn.1673-4785.2009.05.001]
 SHI Zhi-guo,WANG Zhi-liang,LIU Ji-wei.Developments in heterogeneous multi-robot cooperation systems[J].CAAI Transactions on Intelligent Systems,2009,4(05):377.[doi:10.3969/j.issn.1673-4785.2009.05.001]
[7]海 丹,李 勇,张 辉,等.无线传感器网络环境下基于粒子滤波的移动机器人SLAM算法[J].智能系统学报,2010,5(05):425.[doi:10.3969/j.issn.1673-4785.2010.05.008]
 HAI Dan,LI Yong,ZHANG Hui,et al.Simultaneous localization and mapping of a mobile robot in wireless sensor networks based on particle filtering[J].CAAI Transactions on Intelligent Systems,2010,5(05):425.[doi:10.3969/j.issn.1673-4785.2010.05.008]
[8]房立金,王洪光.架空线移动机器人行走越障特点[J].智能系统学报,2010,5(06):492.
 FANG Li-jin,WANG Hong-guang.Research on the characteristics of the movement and obstacleclearing processes of a wiresuspended mobile robot[J].CAAI Transactions on Intelligent Systems,2010,5(05):492.
[9]杨茂,田彦涛.复杂环境下多机器人觅食路径规划与控制[J].智能系统学报,2013,8(02):162.[doi:10.3969/j.issn.1673-4785.201208022]
 YANG Mao,TIAN Yantao.Foraging path planning and control for multi-robot in complex environment[J].CAAI Transactions on Intelligent Systems,2013,8(05):162.[doi:10.3969/j.issn.1673-4785.201208022]
[10]贺超,刘华平,孙富春,等.采用Kinect的移动机器人目标跟踪与避障[J].智能系统学报,2013,8(05):426.[doi:10.3969/j.issn.1673-4785.201301028]
 HE Chao,LIU Huaping,SUN Fuchun,et al.Target tracking and obstacle avoidance of mobile robot using Kinect[J].CAAI Transactions on Intelligent Systems,2013,8(05):426.[doi:10.3969/j.issn.1673-4785.201301028]

备注/Memo

备注/Memo:
收稿日期:2013-02-23.     网络出版日期:2013-09-29. 
基金项目:国家自然科学基金资助项目(61105088).
通信作者:杜志江. E-mail: Duzj01@hit.edu.cn
作者简介:
任立敏,女,1982年生,讲师,博士研究生,主要研究方向为移动机器人智能控制与避障、多机器人编队技术.
王伟东,男,1978年生,讲师,博士,主要研究方向为移动机器人控制技术、非结构环境移动机器人.
杜志江,男,1972年生,教授,博士生导师,IEEE会员,中国机械工程学会高级会员,中国自动化学会机器人委员会委员.主要研究方向为医疗机器人、工业机器人、危险环境作业机器人.先后主持和承担国家自然科学基金重点项目、国家“863”计划重点项目、国家科技重大专项以及省部级项目和横向合作项目20余项.获国家技术发明二等奖1项、黑龙江省技术发明一等奖1项、二等奖1项.发表学术论文100余篇.
更新日期/Last Update: 2013-11-28