[1]张晓楠,刘建平.Graz- 脑机接口研究概述[J].智能系统学报,2013,8(05):395-399.[doi:10.3969/j.issn.1673-4785.201304055]
 ZHANG Xiaonan,LIU Jianping.Summary on the research for Graz-brain-computer interface[J].CAAI Transactions on Intelligent Systems,2013,8(05):395-399.[doi:10.3969/j.issn.1673-4785.201304055]
点击复制

Graz- 脑机接口研究概述(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第8卷
期数:
2013年05期
页码:
395-399
栏目:
出版日期:
2013-10-25

文章信息/Info

Title:
Summary on the research for Graz-brain-computer interface
文章编号:
1673-4785(2013)05-0395-05
作者:
张晓楠1刘建平2
1.武警工程大学 信息工程系,陕西 西安 710086; 2.武警工程大学 理学院,陕西 西安 710086
Author(s):
ZHANG Xiaonan 1 LIU Jianping 2
1.Information Engineering Department, Chinese Armed Police Force Engineering University, Xi’an 710086, China; 2. College of Science, Chinese Armed Police Force Engineering University, Xi’an 710086, China
关键词:
Graz- 脑机接口脑机接口运动想象控制μ节律同步自适应回归参数复杂波段功率特征相位同步特征自适应分类器
Keywords:
Graz-BCI BCI control for motion thinking μ rhythm synchronization adaptive regression parameter power feature of complex wave band phase synchronization features adaptive classifier
分类号:
TP391.4
DOI:
10.3969/j.issn.1673-4785.201304055
文献标志码:
A
摘要:
在明确了BCI相关概念与研究背景的基础上,从Graz-BCI的研究内容和应用2个方面,对Graz-BCI的研究现状进行了概述.归纳了运动想象控制、μ节律同步、自适应回归参数、复杂波段功率特征、相位同步特征及自适应分类器等方面Graz-BCI的关键技术,介绍了运动想象控制的研究基础、试验方法及相关参数、与自适应回归参数匹配的分类器、基于相位的复杂波段功率特征及相位同步特征、ADIM和ALDA 2种自适应分类器.总结了Graz-BCI技术在神经假体与拼写设备的相关应用,指出了Graz-BCI在运动想象控制、“大脑开关”以及光学BCI原理机等方面的发展趋势.
Abstract:
On the basis of defining the related concepts and research background of brain computer interface (BCI), the present research situation of Graz-BCI are summarized from two aspects including both research content and research application. The key technologies of Graz-BCI for such aspects as control for motion thinking, μ rhythm synchronization, adaptive regression parameter, power feature of complex wave band, phase synchronization features and adaptive classifier, are induced. The research basis, test method and related parameters on the control for motion thinking, the classifier matching the adaptive regression parameter, the power feature of complex wave band and phase synchronization features on basis of phase, ADIM (adaptive information matrix) and ALDA (adaptive linear discriminant analysis) adaptive classifier, are introduced. The relevant application of Graz-BCI technology on the aspects of nerve prosthesis and spelling equipment are summarized, in addition, the developing trend of Graz-BCI on such aspects as the control for motion thinking, “brain switch” and the optical BCI prototype machine are pointed out.

参考文献/References:

[1]FLOTZINGER D G, PFURTSCHELLER C, BERGER N J, et al. Classification of non-averaged EEG data by learning vector quantisation and the influence of signal preprocessing[J]. Medical & Biological Engineering & Computing, 1994, 32(5): 571-576.
[2]KALCHER J, FLOTZINGER D, NEUPER C, et al. Graz brain-computer interface II: towards communication between man and computer based on online classification of three different EEG patterns[J]. Medical & Biological Engineering & Computing, 1996, 34(5): 382-388.
[3]PFURTSCHELLER G, KALCHER J, NEUPER C, et al. On-line EEG classification during externally-paced hand movements using a neural network-based classifier[J]. Electroencephalography and Clinical Neurophysiology, 1996, 99(5): 416-425.
[4]PFURTSCHELLER G, FLOTZINGER D, PREGENZER M, et al. EEG-based brain computer interface (BCI). Search for optimal electrode positions and frequency components[J]. Medical Progress through Technology, 1995, 21(3): 111-121.
[5]WOLPAW J R, RAMOSER H, MCFARLAND D J, et al. EEG-based communication: improved accuracy by response verification[J]. IEEE Transactions on Rehabilitation Engineering, 1998, 6(3): 326-333.
[6]WOLPAW J R, FLOTZINGER D, PURTSCHELLER G, et al. Timing of EEG-based cursor control[J]. Journal of Clinical Neurophysiology, 1997, 14(6): 529-538.
[7]PFURTSCHELLER G, NEUPER C, RAMOSER H, et al. Visually guided motor imagery activates sensorimotor areas in humans[J]. Neuroscience Letters, 1999, 269(3): 153-156.
[8]PFURTSCHELLER G, NEUPER C. Motor imagery and direct brain-computer communication[J]. Proceedings of the IEEE, 2001, 89(7): 1123-1134.
[9]PFURTSCHELLER G, NEUPER C, BRUNNER C, et al. Beta rebound after different types of motor imagery in man[J]. Neuroscience Letters, 2005, 378(3): 156-159.
[10]WANG T, DENG H, HE B. Classifying EEG-based motor imagery tasks by means of time-frequency synthesized spatial patterns[J]. Clinical Neurophysiology, 2004, 115(12): 2744-2753.
[11]PFURTSCHELLER G, NEUPER C, BIRBAUMER N. Human brain-computer interface[M]//RIEHLE A, VAADIA E. Motor cortex in voluntary movements: a distributed system for distributed functions. New York: CRC Press, 2005: 253-267.[12]PFURTSCHELLER G, MULLER G R, PFURTSCHELLER J, et al. “Thought”—control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia[J]. Neuroscience Letters, 2003, 351(1): 33-36.
[13]MULLER G R, SCHERER R, NEUPER C, et al. EEG-basierende kommunikation: erfahrungen mit einem telemonitoring system zum patiententraining[C]//Proceedings of 38th Annual Converse of the German Society for Medical and Biological Engineering in VDE. Berlin, Germany, 2004: 230-231.
[14]OBERMAIER B, MULLER G R, PFURTSCHELLER G. “Virtual keyboard” controlled by spontaneous EEG activity[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2004, 11(4): 422-426.
[15]MULLER G R, NEUPER C, PFURTSCHELLER G. Implementation of a telemonitoring system for the control of an EEGbased brain-computer interface[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2003, 11(1): 54-59.
[16]LAHRMANN H, NEUPER C, MULLER G R, et al. Usefulness of an EEG-based brain-computer interface to establish communication in ALS[J]. Journal of the Neurological Sciences, 2005, 238(1): 485.

相似文献/References:

[1]程煜,张鸣宇,陶霖密.1-Bit人机交互系统[J].智能系统学报,2015,10(04):528.[doi:10.3969/j.issn.1673-4785.201501015]
 CHENG Yu,ZHANG Mingyu,TAO Linmi.One-Bit human-computer interactive system[J].CAAI Transactions on Intelligent Systems,2015,10(05):528.[doi:10.3969/j.issn.1673-4785.201501015]

备注/Memo

备注/Memo:
收稿日期:2013-04-17.     网络出版日期:2013-09-29. 
通信作者:张晓楠. E-mail:474375299@qq.com.
作者简介:
张晓楠,女,1987年生,硕士研究生,主要研究方向为数字信号处理. 
刘建平,男,1967年生,教授,博士后,武警工程大学军事通信学学科带头人,主要研究方向为数字信号处理.睡眠质量评估方面的研究达到了国际前沿水平,获武警部队科技进步三等奖2项,发表学术论文30余篇,其中被EI检索6篇.
更新日期/Last Update: 2013-11-28