[1]海 丹,李 勇,张 辉,等.无线传感器网络环境下基于粒子滤波的移动机器人SLAM算法[J].智能系统学报,2010,5(05):425-431.[doi:10.3969/j.issn.1673-4785.2010.05.008]
 HAI Dan,LI Yong,ZHANG Hui,et al.Simultaneous localization and mapping of a mobile robot in wireless sensor networks based on particle filtering[J].CAAI Transactions on Intelligent Systems,2010,5(05):425-431.[doi:10.3969/j.issn.1673-4785.2010.05.008]
点击复制

无线传感器网络环境下基于粒子滤波的移动机器人SLAM算法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第5卷
期数:
2010年05期
页码:
425-431
栏目:
出版日期:
2010-10-25

文章信息/Info

Title:
Simultaneous localization and mapping of a mobile robot in wireless sensor networks based on particle filtering
文章编号:
1673-4785(2010)05-0425-07
作者:
海   丹李   勇张   辉李   迅
国防科技大学 机电工程与自动化学院,湖南 长沙 410073
Author(s):
HAI Dan LI Yong ZHANG Hui LI Xun
College of Mechatronics Engineering and Automation, National University of Defense Technology, Changsha 410073, China
关键词:
无线传感器网络移动机器人同时定位与建图粒子滤波
Keywords:
wireless sensor network mobile robot SLAM particle filtering
分类号:
TP24
DOI:
10.3969/j.issn.1673-4785.2010.05.008
文献标志码:
A
摘要:
定位问题是移动机器人研究领域中最基本的问题,在Bayes的框架下研究了机器人与无线传感器网络(WSN)组成系统中的同时建图与定位问题(SLAM).针对该系统中只存在距离测量信息可用的情况提出了一种基于粒子滤波的SLAM算法.该方法将机器人状态和节点位置估计设置为一组全局估计粒子,通过对粒子及其权重的更新来计算整个系统的状态.算法将WSN节点的位置估计在机器人的路径上分解为相互独立的估计,从而将全局粒子的计算转化为使用一个机器人状态滤波器和对应于每个机器人粒子的节点位置滤波器进行计算.针对观测信息低维的特点,设计了处理低维观测信息的方法,使得观测信息可以在滤波阶段得到合理利用.并且详细介绍了提出的SLAM算法原理和计算过程,并通过仿真实验证明了算法的有效性和实用性.
Abstract:
Localization is one of the most fundamental problems in mobile robots. A method for simultaneous localization and mapping (SLAM) in robot and WSN systems using range-only measurements was presented in a Bayes framework and a particle filtering method was designed for the problem. The estimations of the robot’s path and WSN node position were set to be clusters of particles which were called status particles. The status particles were used to estimate the whole state posterior by its position and weight. The algorithm assumed position of WSN nodes which were conditioned independently along the robot’s path, so the system posterior could be computed separately. A particle filter called a robot filter was used to compute the robot’s posterior and a separate copy of each node filter corresponding to each robot particle. Due to the low dimension of range measurement, methods were made for utilizing this information. The experiment proved the efficiency and practicality of the algorithm.

参考文献/References:

[1]DURRANT-WHYTE H. Where am I? A tutorial on mobile vehicle localization[J]. Industrial Robot, 1994, 21(2): 11-16.
[2]DURRANT-WHYTE H,BAILEY T. Simultaneous localization and mapping: part Ⅰthe essential algorithms[J]. IEEE Robotics and Automation Magazine, 2006, 13(2): 99-108.
[3]RABAEY J M, AMMER M J, Da SILVA J L, et al. PicoRadio supports ad hocultra-low power wireless networking[J]. IEEE Computer, 2002, 33(7): 42-48.
[4]SAYED A H, TARIGHAT A, KHAJEHNOURI N. Network-based wireless location[J]. IEEE Signal Processing Magazine, 2005, 22(4): 24-40.
[5]SUN Guolin, CHEN Jie, GUO Wei, et al. Signal processing techniques in networkaided position[J]. IEEE Signal Processing Magazine, 2005, 22: 12-23.
[6]李阳铭,孟庆虎,梁华为,等.基于粒子滤波的无线传感器网络辅助同步定位与地图创建方法研究[J].机器人, 2008: 30(5): 421-427.
 LI Yangming, MENG Qinghu, LIANG Huawei, et al. On WSN-aided simultaneous localization and mapping based on particle filtering[J]. Robot, 2008: 30(5): 421-427.
[7]MENEGATTI E, ZANELLA A, ZILLI S, et al. Range-only SLAM with a mobile robot and a wireless sensor networks[C]//Proceedings of the 2009 IEEE International Conference on Robotics and Automation. Kobe, Japan, 2009: 1699-1705.
[8]JENSFELT P, CHRISTENSEN H I. Laser based pose tracking[C]//Proceedings of the 1999 IEEE International Conference on Robotics and Automation. Detroit, USA, 1999: 2994-3000.
[9]CABALLERO F, MERINO L, GIL P, et al. A probabilistic frameworks for entire WSN localization using a mobile robot[J]. Robotics and Autonomous Systems, 2008, 56(10): 798-806.
[10]THRUN S, BURGARD W, FOX D. Probabilistic robotics[M]. Cambridge, USA: MIT Press, 2005.
[11]REKLEITIS I M. A particle filter tutorial for mobile robot localization, technical report TR-CIM-04-02[R]. Montreal, Canada: Centre for Intelligent Machines, McGill University, 2004.
[12]BLANCO J L, FEMANDEZMADRIGAL J A, GONZALEZ J. Efficient probabilistic range-only SLAM[C]// IEEE/RST International Conference on Intelligent Robots and Systems. Nice, France, 2008: 1017-1022.

相似文献/References:

[1]毕晓君,张艳双.基于免疫算法的无线传感器网络路由算法[J].智能系统学报,2009,4(01):67.
 BI Xiao-jun,ZHANG Yan-shuang.A routing algorithm for wireless sensor networks based on an immune algorithm[J].CAAI Transactions on Intelligent Systems,2009,4(05):67.
[2]蔡自兴,王 勇,王 璐.基于角点聚类的移动机器人自然路标检测与识别[J].智能系统学报,2006,1(01):52.
 CAI Zi-xing,WANG Yong,WANG Lu.Corner clustering based detection and recognition of natural landmark for mobile robot[J].CAAI Transactions on Intelligent Systems,2006,1(05):52.
[3]杨甜甜,刘志远,陈 虹,等.移动机器人编队控制的现状与问题[J].智能系统学报,2007,2(04):21.
 YANG Tian-tian,LIU Zhi-yuan,CHEN Hong,et al.Formation control of mobile robots: state and open prob lems[J].CAAI Transactions on Intelligent Systems,2007,2(05):21.
[4]陈珍焰,刘贵喜.移动节点的LEACH改进型算法[J].智能系统学报,2008,3(02):140.
 CHEN Zhen-yan,LIU Gui-xi.An improved LEACH algorithm based on mobile sensor nodes[J].CAAI Transactions on Intelligent Systems,2008,3(05):140.
[5]李润伟,蔡自兴,童宇,等.基于ATM的提高狭窄环境探测精度的改进方法[J].智能系统学报,2008,3(04):283.
 LI Run-wei,CAI Zi-xing,TONG Yu.Improving the accuracy of exploring the narrow environment by using ATM[J].CAAI Transactions on Intelligent Systems,2008,3(05):283.
[6]霍成立,谢 凡,秦世引.面向室内移动机器人的无迹滤波实时导航方法[J].智能系统学报,2009,4(04):295.
 HUO Cheng-li,XIE Fan,QIN Shi-yin.A case study in realtime UKFbased navigation for indoor autonomous travel of mobile robots[J].CAAI Transactions on Intelligent Systems,2009,4(05):295.
[7]房立金,王洪光.架空线移动机器人行走越障特点[J].智能系统学报,2010,5(06):492.
 FANG Li-jin,WANG Hong-guang.Research on the characteristics of the movement and obstacleclearing processes of a wiresuspended mobile robot[J].CAAI Transactions on Intelligent Systems,2010,5(05):492.
[8]何敏,赵东风,保利勇,等.一种能量有效的无线传感器网络轮询接入控制协议[J].智能系统学报,2012,7(03):265.
 HE Min,ZHAO Dongfeng,BAO Liyong,et al.An energyefficiency polling access control protocol for wireless sensor networks[J].CAAI Transactions on Intelligent Systems,2012,7(05):265.
[9]叶玲,李太华,代学武.无线传感器网络环境下基于卡尔曼滤波的PTP协议[J].智能系统学报,2012,7(06):518.
 YE Ling,LI Taihua,DAI Xuewu.Kalman filtering based precision time protocol (PTP) in wireless sensor networks[J].CAAI Transactions on Intelligent Systems,2012,7(05):518.
[10]梁俊斌,刘明.带时延约束的连通目标覆盖最大化生命周期问题[J].智能系统学报,2013,8(04):319.[doi:10.3969/j.issn.1673-4785.201304030]
 LIANG Junbin,LIU Ming.Lifetime maximization for delay constraint connected target coverage[J].CAAI Transactions on Intelligent Systems,2013,8(05):319.[doi:10.3969/j.issn.1673-4785.201304030]

备注/Memo

备注/Memo:
收稿日期:2010-02-25.
基金项目:国家自然科学基金资助项目(60475035).
通信作者:海    丹.E-mail:haidan@nudt.edu.cn.
作者简介:
海    丹,男,1980年生,博士研究生,主要研究方向为机器人导航、无线传感器网络定位技术.发表学术论文8篇.
李    勇,男,1984年生,硕士研究生,主要研究方向无线传感器网络定位技术.发表学术论文4篇.
张    辉,男,副教授,主要研究方向为机器人控制及机器人同步定位与建图技术.发表学术论文20余篇.
更新日期/Last Update: 2010-11-26