[1]孙凤池,宋萌,刘光.一种无线传感器信号衰减自适应测距模型[J].智能系统学报,2012,7(03):214-219.
 SUN Fengchi,SONG Meng,LIU Guang.An adaptive ranging model based on energy distance loss of wireless sensors[J].CAAI Transactions on Intelligent Systems,2012,7(03):214-219.
点击复制

一种无线传感器信号衰减自适应测距模型(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第7卷
期数:
2012年03期
页码:
214-219
栏目:
出版日期:
2012-06-25

文章信息/Info

Title:
An adaptive ranging model based on energy distance loss of wireless sensors
文章编号:
1673-4785(2012)03-0214-06
作者:
孙凤池宋萌刘光
南开大学 软件学院,天津 300071
Author(s):
SUN Fengchi SONG Meng LIU Guang
College of Software, Nankai University, Tianjin 300071, China
关键词:
机器人无线传感器信号衰减自适应测距模型
Keywords:
robot wireless sensors energy distance loss adaptive ranging model
分类号:
TP24
文献标志码:
A
摘要:
使用无线传感器作为路标实现机器人定位具有许多优势,但无线传感器与机器人之间的距离测量存在易受环境干扰的缺点.为了解决这一难题,在对无线传感器射频信号衰减原理分析的基础上,基于在线学习的方法为无线传感器路标建立自适应的信号衰减测距模型.由于模型学习过程是在线进行的,环境因素对无线信号传播衰减的影响被包含在模型中,故此测距模型提高了对无线信号传播环境的适应能力.此外,把路标的身份作为测距模型的输入,从而区分了传感器个体的差异,实验结果证明了这种建模方法在提高无线传感器测距精度方面的有效性.
Abstract:
Using wireless sensors as landmarks for mobile robot localization has many advantages, but the process of measuring the distance between the robot and wireless sensor is susceptible to environmental disturbance. To solve this difficult problem, the radio frequency signal decay theory was analyzed, and an adaptive signal decay range model was established for wireless landmarks based on the online learning method. The model learning was completed online, so the effect of the environmental factors on the decay of wireless signal transmission was included in the online modeling process; correspondingly, the adaptive ability of the model was improved. In addition, the identity numbers of different wireless landmarks were also input into the artificial neural network model so that differences among certain sensors were considered. Experiments show that the proposed modeling method is effective for improving wireless sensor ranging precision.

参考文献/References:

[1]陈卫东,张飞.移动机器人的同步自定位与地图创建研究进展[J].控制理论与应用, 2005, 22(3): 455460.
CHEN Weidong, ZHANG Fei. Review on the achievements in simultaneous localization and map building for mobile robot[J]. Control Theory and Applications, 2005, 22(3): 455460.
[2]魏芳,董再励,孙茂相,等.用于移动机器人的视觉全局定位系统研究[J].机器人, 2001, 23(5): 400403, 420.
 WEI Fang, DONG Zaili, SUN Maoxiang, et al. A vision global location system technique for mobile robots[J]. Robot, 2001, 23(5): 400403, 420.
[3]蔡自兴,王勇,王璐.基于角点聚类的移动机器人自然路标检测与识别[J].智能系统学报, 2006, 1(1): 5256.
CAI Zixing, WANG Yong, WANG Lu. Corner cluster based detection and recognition of natural landmark for mobile robots[J]. CAAI Transactions on Intelligent Systems, 2006, 1(1): 5256.
[4]LOPEZ D G, SJO K, PAUL C, et al. Hybrid laser and vision based object search and localization[C]//IEEE International Conference on Robotics and Automation. Pasadena, USA, 2008: 26362643.
[5]陆军,孙凌丽,穆海军,等.基于全景视觉的机器人相互定位的研究[J].哈尔滨工程大学学报, 2010, 31(4): 457464.
LU Jun, SUN Lingli, MU Haijun, et al. Mutual localization of mobile robots using an omnivision system[J]. Journal of Harbin Engineering University, 2010, 31(4): 457464.
[6]HAHNEL D, BURGARD W, FOX D, et al. Mapping and localization with RFID technology[C]//IEEE International Conference on Robotics and Automation. New Orleans, USA, 2004: 10151020.
[7]CHO K, KANG M S, PARK S, et al. Development of indoor localization system using ultrasonic sensors[C]//International Symposium on Robotics (ISR). Seoul, Korea, 2008: 211215.
[8]孙凤池,苑晶.一种用于未知环境探索的可动态配置路标系统[J].机器人, 2010, 32(1): 7782.
SUN Fengchi, YUAN Jing. A dynamically configurable landmark system for unknown environment exploration[J]. Robot, 2010, 32(1): 7782.
[9]PRIYANTHA N B, CHAKRABORTY A, BALAKRISHNAN H. The cricket locationsupport system[C]//Sixth Annual International Conference on Mobile Computing and Networking. New York, USA, 2000: 3243.
[10]石鹏,徐凤燕,王宗欣.基于传播损耗模型的最大似然估计室内定位算法[J].信号处理, 2005, 21(5): 502504.
SHI Peng, XU Fengyan, WANG Zongxin. A maximumlikelihood indoor location algorithm based on indoor propagation loss model[J]. Signal Processing, 2005, 21(5): 502504.
[11]VORST P, ZELL A. Semiautonomous learning of an RFID sensor model for mobile robot selflocation[C]//European Robotics Symposium. Prague, Czech Republic, 2008: 273282.

相似文献/References:

[1]方勇纯.机器人视觉伺服研究综述[J].智能系统学报,2008,3(02):109.
 FANG Yong-chun.A survey of robot visual servoing[J].CAAI Transactions on Intelligent Systems,2008,3(03):109.
[2]王立权,刘秉昊,吴健荣,等.6R关节型机器人运动学建模[J].智能系统学报,2010,5(02):156.
 WANG Li-quan,LIU Bing-hao,WU Jian-rong,et al.Modeling and implementing the inverse kinematics ofa six revolute joint robot[J].CAAI Transactions on Intelligent Systems,2010,5(03):156.
[3]孙宁,方勇纯.一类欠驱动系统的控制方法综述[J].智能系统学报,2011,6(03):200.
 SUN Ning,FANG Yongchun.A review for the control of a class of underactuated systems[J].CAAI Transactions on Intelligent Systems,2011,6(03):200.
[4]蒲兴成,张军,张毅.基于神经网络的改进行为协调控制及其在智能轮椅路径规划中的应用[J].智能系统学报,2011,6(05):456.
 PU Xingcheng,ZHANG Jun,ZHANG Yi.Modified behavior coordination for intelligent wheelchair path planning based on a neural network[J].CAAI Transactions on Intelligent Systems,2011,6(03):456.
[5]李晓飞,刘宏.机器人听觉声源定位研究综述[J].智能系统学报,2012,7(01):9.
 LI Xiaofei,LIU Hong.A survey of sound source localization for robot audition[J].CAAI Transactions on Intelligent Systems,2012,7(03):9.
[6]孙玉香,曹会彬,冯勇,等.具有拨土功能的轮腿一体化机器人结构设计[J].智能系统学报,2012,7(05):409.
 SUN Yuxiang,CAO Huibin,FENG Yong,et al.Structure design on a legwheeledintegration robotwith an earthmoving function[J].CAAI Transactions on Intelligent Systems,2012,7(03):409.
[7]伍明,李琳琳,李承剑.基于协方差交集的多机器人协作目标跟踪算法[J].智能系统学报,2013,8(01):66.[doi:10.3969/j.issn.1673-4785.201204022]
 WU Ming,LI Linlin,LI Chengjian.An algorithm of multi robot cooperative object tracking based on covariance intersection[J].CAAI Transactions on Intelligent Systems,2013,8(03):66.[doi:10.3969/j.issn.1673-4785.201204022]
[8]肖国宝,严宣辉.一种基于改进Theta *的机器人路径规划算法[J].智能系统学报,2013,8(01):58.[doi:10.3969/j.issn.1673-4785.201208032]
 XIAO Guobao,YAN Xuanhui.A path planning algorithm based on improved Theta * for mobile robot[J].CAAI Transactions on Intelligent Systems,2013,8(03):58.[doi:10.3969/j.issn.1673-4785.201208032]
[9]李大伟,贾鹏飞,李卫国,等.一种基于卡尔曼滤波与模糊算法的变电站机器人组合导航及控制系统设计[J].智能系统学报,2013,8(03):226.
 LI Dawei,JIA Pengfei,LI Weiguo,et al.A kind of integrated navigation and control system design for substation robot based on the Kalman filtering and fuzzy algorithm[J].CAAI Transactions on Intelligent Systems,2013,8(03):226.
[10]裴振兵,陈雪波.改进蚁群算法及其在机器人避障中的应用[J].智能系统学报,2015,10(01):90.[doi:10.3969/j.issn.1673-4785.201311018]
 PEI Zhenbing,CHEN Xuebo.Improved ant colony algorithm and its application in obstacle avoidance for robot[J].CAAI Transactions on Intelligent Systems,2015,10(03):90.[doi:10.3969/j.issn.1673-4785.201311018]

备注/Memo

备注/Memo:
收稿日期: 2011-08-08.网络出版日期:2012-05-08.
基金项目:国家自然科学基金资助项目(61175083, 61175085);天津市自然科学基金资助项目(10JCYBJC07600).
通信作者:孙凤池.E-mail: fengchisun@nankai.edu.cn.
作者简介:
孙凤池,男,1973年生,副教授,博士.主要研究方向为智能机器人、嵌入式系统.
宋萌,女,1986年生,硕士研究生,主要研究方向为智能机器人、模式识别.
刘光,男,1984年生,硕士研究生,主要研究方向为智能机器人.
更新日期/Last Update: 2012-09-05