[1]伍明,李琳琳,李承剑.基于协方差交集的多机器人协作目标跟踪算法[J].智能系统学报,2013,8(01):66-73.[doi:10.3969/j.issn.1673-4785.201204022]
 WU Ming,LI Linlin,LI Chengjian.An algorithm of multi robot cooperative object tracking based on covariance intersection[J].CAAI Transactions on Intelligent Systems,2013,8(01):66-73.[doi:10.3969/j.issn.1673-4785.201204022]
点击复制

基于协方差交集的多机器人协作目标跟踪算法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第8卷
期数:
2013年01期
页码:
66-73
栏目:
出版日期:
2013-03-25

文章信息/Info

Title:
An algorithm of multi robot cooperative object tracking based on covariance intersection
文章编号:
1673-4785(2013)01-0066-08
作者:
伍明李琳琳李承剑
第二炮兵工程大学 指挥信息工程系,陕西 西安 710025
Author(s):
WU Ming LI Linlin LI Chengjian
Command Information Engineering Department, The Second Artillery Engineering College, Xi′an 710025, China
关键词:
机器人多机器人协作目标跟踪算法协方差交集
Keywords:
robots multi robot cooperation object tracking algorithm covariance intersection
分类号:
TP242.6
DOI:
10.3969/j.issn.1673-4785.201204022
文献标志码:
A
摘要:
为了解决未知环境下多机器人协作目标跟踪问题,设计了一种基于协方差交集数据融合的分布式解决算法.单台机器人运用全协方差扩展式卡尔曼滤波器完成未知环境下机器人状态和目标状态的同步估计,当单台机器人发现同伴并利用观测值对同伴机器人状态进行本地估计后,将结果连同目标状态一起发往同伴机器人,同伴机器人进行数据验证后,采用基于协方差交集的数据融合算法完成本地相关状态的更新,由于并不需要知道相关估计对象之间的协方差阵,因此算法具有分布式特点.仿真实验证明了算法能够有效提高机器人对于自身状态、环境特征状态以及目标状态的估计准确性.
Abstract:
In order to solve the problem of multirobot cooperative object tracking in unknown environments, a distributed algorithm based on covariance intersection data fusion was proposed in this paper. To the single robot, states of robot and object in an unknown environment are simultaneously estimated using a full covariance extended Kalman filter. As the robot finds a partner, it will estimate the state of the partner according to observation and then send the state collectively with object state to the partner. Once the partner verifies the incoming information, the relevant local state is updated using data fusion algorithm based on a covariance intersection. Since the covariance between different states is not needed, and therefore the algorithm was distributed. The improvement in estimation precision of the robot state, environment characteristic state and object state using this approach was verified through the simulation results.

参考文献/References:

[1]FOX D, BURGARD W, KRUPPA H, et al. A probabilistic approach to collaborative multirobot localization[J]. Autonomous Robots, 2000, 8(3): 325-344.
[2]FENWICK J W, NEWMAN P M, LEONARD J J. Cooperative concurrent mapping and localization[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2002: 18101817.
[3]ZHANG L, SHEN P Y. A new method for moving object tracking with multirobot[J]. Journal of Convergence Information Technology, 2001, 6(8): 35-43.
[4]MOTTAGHI R, VAUGHAN R. An integrated particle filter and potential field method applied to cooperative multirobot target tracking[J]. Autonomous Robots, 2007, 23(1): 19-35. 
[5]MADHAVAN R, FREGENCE K, PARKER L E. Distributed cooperative outdoor multi robot localization and mapping[J]. Autonomous Robots, 2004, 17(1): 23-39.
[6]REKLEITIS I, DUDEK G, MILIOS E. Probabilistic cooperative localization and mapping in practice[C]//Proceedings of the IEEE International Conference in Robotics and Automation. Taipei, China, 2003: 1907-1912.
 [7]罗荣华,洪炳镕.移动机器人同时定位与地图创建研究进展[J].机器人, 2004, 26(2): 182-186.
LUO Ronghua, HONG Bingrong. The progress of simultaneous localization and mapping for mobile robot[J]. Robot, 2004, 26(2): 182-186.
[8]Di MARCO M, GARULLI A, GIANNITRAPANI A, et al. Simultaneous localization and map building for a team of cooperating robot: a set membership approach[J]. IEEE Transactions on Robotics and Automation, 2003, 19(2): 238-248.
[9]WILLIAMS S B, DISSANAYAKE G, DURRANTWHYTE F. Towards multivehicle simultaneous localization and mapping[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Washington, DC, USA, 2002: 2743-2748.
[10]NETTLETON E, GIBBENS P, DURRANTWHYTE H. Closed form solutions to the multiple platform simultaneous localization and map building (SLAM) problem[C]//Proceedings of International Symposium on Sensor Fusion: Architecture, Algorithms and Applications. Orlando, USA, 2000: 428-437.
[11]VAN DER WALLE D, FIDAN B, SUTTON A, et al. Non hierarchical UAV formation control for surveillance tasks[C]//American Control Conference. Seattle, USA, 2008: 777-782.
[12]刘国成.一种基于多传感器数据融合的目标跟踪算法[J].系统仿真学报, 2009, 21(19): 6183-6189. 
LIU Guocheng. Algorithm for multi sensor data fusion target tracking[J]. Journal of System Simulation, 2009, 21(19): 6183-6189.
[13]VIDALY R, SHAKERNIA O, KIM H J, et al. Probabilistic pursuitevasion games theory, implementation, and experimental evaluation[J]. IEEE Transactions on Robotics and Automation, 2002, 18(5): 662-669.
[14]WANG C C, THORPE C. Simultaneous localization and mapping with detection and tracking of moving objects[J]. International Journal of Robotics Research, 2007, 26(9): 889-916.
[15]BORRMANN D, ELSEBERG J, LINGEMANN K, et al. Globally consistent 3D mapping with scan matching[J]. Robotics and Autonomous Systems, 2008, 56(2): 130-142.
[16]伍明,孙继银.基于扩展式卡尔曼滤波的机器人未知环境下动态目标跟踪[J].机器人, 2010, 32(3): 334343.
WU Ming, SUN Jiyin. Extended Kalman filter based moving object tracking by mobile robot in unknown environment[J]. Robot, 2010, 32(3): 334-343.
[17]ARRAS K O. Featurebased robot navigation in known and unknown environments[D]. Lausanne, Switzerland: Swiss Federal Institute of Technology Lausanne, 2003.
[18]PEREIRA G A S, KUMAR R V, CAMPOS M F M. Localization and tracking in robot networks[EB/OL]. [2012-04-20].
http://repository.upenn.edu/cgi/viewcontent.cgi?article=1038&context=meam_papers.
[19]CHEN L J, ARAMBEL P O, MEHRA R K. Fusion under unknown correlation covariance intersection as a special case[C]//Proceedings of International Conference on Information Fusion. Piscataway, USA, 2002: 905-912.
[20]WU Ming, HUANG Feifei, WANG Long. A distributed multi robot cooperative hunting algorithm based on limit cycle[C]//Proceedings of the International Asia Conference on Informatics in Control, Automation and Robotics. Bangkok, Thailand, 2009: 156-160.

相似文献/References:

[1]方勇纯.机器人视觉伺服研究综述[J].智能系统学报,2008,3(02):109.
 FANG Yong-chun.A survey of robot visual servoing[J].CAAI Transactions on Intelligent Systems,2008,3(01):109.
[2]王立权,刘秉昊,吴健荣,等.6R关节型机器人运动学建模[J].智能系统学报,2010,5(02):156.
 WANG Li-quan,LIU Bing-hao,WU Jian-rong,et al.Modeling and implementing the inverse kinematics ofa six revolute joint robot[J].CAAI Transactions on Intelligent Systems,2010,5(01):156.
[3]孙宁,方勇纯.一类欠驱动系统的控制方法综述[J].智能系统学报,2011,6(03):200.
 SUN Ning,FANG Yongchun.A review for the control of a class of underactuated systems[J].CAAI Transactions on Intelligent Systems,2011,6(01):200.
[4]蒲兴成,张军,张毅.基于神经网络的改进行为协调控制及其在智能轮椅路径规划中的应用[J].智能系统学报,2011,6(05):456.
 PU Xingcheng,ZHANG Jun,ZHANG Yi.Modified behavior coordination for intelligent wheelchair path planning based on a neural network[J].CAAI Transactions on Intelligent Systems,2011,6(01):456.
[5]李晓飞,刘宏.机器人听觉声源定位研究综述[J].智能系统学报,2012,7(01):9.
 LI Xiaofei,LIU Hong.A survey of sound source localization for robot audition[J].CAAI Transactions on Intelligent Systems,2012,7(01):9.
[6]孙凤池,宋萌,刘光.一种无线传感器信号衰减自适应测距模型[J].智能系统学报,2012,7(03):214.
 SUN Fengchi,SONG Meng,LIU Guang.An adaptive ranging model based on energy distance loss of wireless sensors[J].CAAI Transactions on Intelligent Systems,2012,7(01):214.
[7]孙玉香,曹会彬,冯勇,等.具有拨土功能的轮腿一体化机器人结构设计[J].智能系统学报,2012,7(05):409.
 SUN Yuxiang,CAO Huibin,FENG Yong,et al.Structure design on a legwheeledintegration robotwith an earthmoving function[J].CAAI Transactions on Intelligent Systems,2012,7(01):409.
[8]肖国宝,严宣辉.一种基于改进Theta *的机器人路径规划算法[J].智能系统学报,2013,8(01):58.[doi:10.3969/j.issn.1673-4785.201208032]
 XIAO Guobao,YAN Xuanhui.A path planning algorithm based on improved Theta * for mobile robot[J].CAAI Transactions on Intelligent Systems,2013,8(01):58.[doi:10.3969/j.issn.1673-4785.201208032]
[9]李大伟,贾鹏飞,李卫国,等.一种基于卡尔曼滤波与模糊算法的变电站机器人组合导航及控制系统设计[J].智能系统学报,2013,8(03):226.
 LI Dawei,JIA Pengfei,LI Weiguo,et al.A kind of integrated navigation and control system design for substation robot based on the Kalman filtering and fuzzy algorithm[J].CAAI Transactions on Intelligent Systems,2013,8(01):226.
[10]裴振兵,陈雪波.改进蚁群算法及其在机器人避障中的应用[J].智能系统学报,2015,10(01):90.[doi:10.3969/j.issn.1673-4785.201311018]
 PEI Zhenbing,CHEN Xuebo.Improved ant colony algorithm and its application in obstacle avoidance for robot[J].CAAI Transactions on Intelligent Systems,2015,10(01):90.[doi:10.3969/j.issn.1673-4785.201311018]

备注/Memo

备注/Memo:
收稿日期:2012-04-25.
网络出版日期:2013-01-25.
通信作者:伍明.
E-mail:hyacinth531@163.com.
作者简介:
伍明,男,1981年生,讲师,博士,主要研究方向为自主机器人控制、多机器人协作、机器人环境构建.发表学术论文10余篇,其中被EI检索8篇. 
李琳琳,女,1974年生,副教授,博士.主要研究方向为信息栅格技术、多传感器网络、物联网.主持国家高技术研究项目1项,发表学术论文20余篇,其中被EI检索12篇.
李承剑,1983年生,讲师,主要研究方向为指挥自动化系统和计算机应用技术.发表学术论文6篇,其中被EI检索2篇.
更新日期/Last Update: 2013-04-12