[1]钱晓山,阳春华.基于GEP的最小二乘支持向量机模型参数选择[J].智能系统学报,2012,7(3):225-229.
 QIAN Xiaoshan,YANG Chunhua.A parameter selection method of a least squares support vector machine based on gene expression programming[J].CAAI Transactions on Intelligent Systems,2012,7(3):225-229.
点击复制

基于GEP的最小二乘支持向量机模型参数选择

参考文献/References:
[1]VAPNIK V N. The nature of statistical learning theory[M]. New York, USA: SpringerVerlag, 1995.
[2]VAPNIK V, LEVIN E, CUN Y L. Measuring the VCdimension of a learning machine[J]. Neural Computation, 1994, 6(5): 851876.
[3]SMOLA A J, SCHOLKOPF B. A tutorial on support vector regression[J]. Statistic and Computing, 2004, 14(3): 199222.
[4]SANCHEZ A D. Advanced support vector machines and kernel methods[J]. Neurocomputing, 2003, 55(1): 520.
[5]SUYKENS J A K, VANDEWALL J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293300.
[6]PELCKMANS K, SUYKENS J A K, DE MOOR B. Building sparse representations and structure determination on LSSVM substrates[J]. Neurocomputing, 2005, 64: 137159.
[7]郑小霞,钱锋.基于PCA和最小二乘支持向量机的软测量建模[J].系统仿真学报, 2006, 18(3): 739741.
ZHENG Xiaoxia, QIAN Feng. Soft sensor modeling based on PCA and support vector machines[J]. Journal of System Simulation, 2006, 18(3): 739741.
[8]赵吉文,刘永斌,孔凡让,等.核参数遗传选优的SVM在直线电机建模中的应用[J].系统仿真学报, 2006, 18(12): 35473549.
?ZHAO Jiwen, LIU Yongbin, KONG Fanrang, et al. Application of SVM with genetic algorithms optimizing kernel parameters in linear motor model[J]. Journal of System Simulation, 2006, 18(12): 35473549.
[9]刘瑞兰,牟盛静,苏宏业,等.基于支持向量机和粒子群算法的软测量建模[J].控制理论与应用, 2006, 23(6): 895899, 906.
LIU Ruilan, MOU Shengjing, SU Hongye, et al. Modeling soft sensor based on support vector machine and particle swarm optimization algorithms[J]. Control Theory and Applications, 2006, 23(6): 895899, 906.
[10]THADANI K, JAYARAMAN V K, SUNDARARAJAN V. Evolutionary selection of kernels in support vector machines[C]//International Conference on Advanced Computing and Communications. Mangalore, India, 2006: 1924.
[11]FERREIRA C. Gene expression programming in problem solving[C/OL]. [20101210]. http://www.geneexpressionprogramming.com/webpapers/GEPtutorial.pdf.
[12]FERREIRA C. Gene expression programming: a new adaptive algorithm for solving problems[J]. Complex Systems, 2001, 13(2): 87129.
[13]MITCHELL M. An introduction to genetic algorithms[M]. Cambridge, UK: The MIT Press, 1996: 143164.
[14]钱晓山,阳春华.改进基因表达式编程在股票中的研究与应用[J].智能系统学报, 2010, 5(4): 303307.
QIAN Xiaoshan, YANG Chunhua. Improved gene expression programming algorithmtested by predicting stock indexes[J]. CAAI Transactions on Intelligent Systems, 2010, 5(4): 303307.
[15]张春晓,张涛.基于最小二乘支持向量机和粒子群算法的两相流含油率软测量方法[J].中国电机工程学报, 2010, 30(2): 8691.
ZHANG Chunxiao, ZHANG Tao. Soft measurement method for oil holdup of two phase flow based on least squares support vector machine and particle swarm optimization[J]. Proceedings of the CSEE, 2010, 30(2): 8691.
[16]RIVERO D, DORADO J, RABUNAL J, et al. Using genetic programming for artificial neural network development and simplification[C]//Proceedings of the 5th WSEAS International Conference on Computational Intelligence, ManMachine Systems and Cybernetics. Venice, Italy, 2006: 6571.
[17]XU Kaikuo, LIU Yintian, RONG Tang, et al. A novel method for real parameter optimization based on gene expression programming[J]. Applied Soft Computing, 2009, 9(2): 725737.
[18]徐文熙,穆文俊.化工原理(上)[M].北京:中国石化出版社, 1992.
相似文献/References:
[1]向峥嵘,陈庆伟.基于小波和LSSVM的软测量建模方法[J].智能系统学报,2010,5(1):63.
 XIANG Zheng-rong,CHEN Qing-wei.An approach to soft sensor modeling based onwavelets and a least square support vector machine[J].CAAI Transactions on Intelligent Systems,2010,5():63.
[2]钱晓山,阳春华.改进基因表达式编程在股票中的研究与应用[J].智能系统学报,2010,5(4):303.
 QIAN Xiao-shan,YANG Chun-hua.Improved gene expression programming algorithm tested by predicting stock indexes[J].CAAI Transactions on Intelligent Systems,2010,5():303.
[3]彭昱忠,元昌安,李洁,等.个体最优共享GEP算法及其气象降水数据预测建模[J].智能系统学报,2016,11(3):401.[doi:10.11992/tis.201603035]
 PENG Yuzhong,YUAN Changan,LI Jie,et al.Individual optimal sharing GEP algorithm and its application in forecast modeling of meteorological precipitation[J].CAAI Transactions on Intelligent Systems,2016,11():401.[doi:10.11992/tis.201603035]

备注/Memo

收稿日期: 2010-12-13.网络出版日期:2012-04-25.
基金项目:国家自然科学基金资助项目(60874069);国家“863”计划资助项目(2009AA04Z124, 2009AA04Z137).
通信作者:钱晓山.E-mail: qianxiaoshan@126.com.
作者简介:钱晓山,男,1980年生,讲师,博士研究生,主要研究方向为复杂工业过程建模、优化控制.
阳春华,女,1965年生,教授,博士生导师,博士,中国有色金属学会计算机学术委员会委员兼秘书长,中国自动化学会理事、应用专业委员会委员、技术过程故障诊断与安全性专业委员会委员,中国人工智能学会智能控制与智能管理专业委员会委员,湖南省自动化学会常务理事.主要研究方向为复杂工业过程建模、优化控制、智能信息处理.完成或在研国家自然科学基金、国家“863”与“973”计划、国家高技术产业化等科研项目36项.曾获国家科技进步二等奖2项,省部级科技进步奖16项,湖南省“十大杰出女性”.申请国家发明专利19项、授权6项,申请软件著作权8项,发表学术论文300余篇,其中被SCI、EI检索110余篇.

更新日期/Last Update: 2012-09-05
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134