[1]宋锐,方勇纯,刘辉.基于LiDAR/INS的野外移动机器人组合导航方法[J].智能系统学报,2020,15(4):804-810.[doi:10.11992/tis.202008026]
 SONG Rui,FANG Yongchun,LIU Hui.Integrated navigation approach for the field mobile robot based on LiDAR/INS[J].CAAI Transactions on Intelligent Systems,2020,15(4):804-810.[doi:10.11992/tis.202008026]
点击复制

基于LiDAR/INS的野外移动机器人组合导航方法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第15卷
期数:
2020年4期
页码:
804-810
栏目:
吴文俊人工智能科学技术奖论坛
出版日期:
2020-07-05

文章信息/Info

Title:
Integrated navigation approach for the field mobile robot based on LiDAR/INS
作者:
宋锐 方勇纯 刘辉
南开大学 人工智能学院,天津 300350
Author(s):
SONG Rui FANG Yongchun LIU Hui
College of Artificial Intelligence, Nankai University, Tianjin 300350, China
关键词:
移动机器人同步定位与建图位姿估计紧耦合非线性惯性导航组合导航系统数据融合
Keywords:
mobile robotSLAM (simultaneous localization and mapping)pose estimationtightly couplednonlinearinertial navigationintegrated navigation systemdata fusion
分类号:
TP242
DOI:
10.11992/tis.202008026
摘要:
移动机器人在地形复杂等野外环境跨区域运动时,机器人运动特性和环境特征变化更为明显,由此引起的点云畸变和特征点稀疏等问题尤为突出,有必要结合传感器标定误差、车轮打滑和车体颠簸等因素进一步改进机器人的位姿估计精度。本文对基于LiDAR/INS的移动机器人环境建模和自主导航方法展开研究,针对LeGO-LOAM等在处理车体姿态快速变化时的性能退化问题,提出一种适用于野外移动机器人运动特性的点云特征分析和多传感融合方法,利用IMU的预积分与LiDAR的scan-to-map构成优化函数,进而迭代更新机器人的位姿。野外环境实验结果表明,当机器人以较高速度做转弯运动或在短时间内多次转向时,本文所提方法仍可以为优化提供良好的初值估计,相比LeGO-LOAM等方法具有更高的位姿估计精度。
Abstract:
When the mobile robot moves in the large scale field with complex terrain, the motion and environmental characteristics changes dramatically, and the problems of motion distortion in point clouds and the sparse of feature points become prominently. Hence, it is necessary to improve the estimation accuracy of position and states from aspects of the calibration of sensors’ error, wheel-slip and bumpy terrain. The environmental modeling and autonomous navigation of the field mobile robot based on LiDAR/INS (Inertial Navigation System) are studied in this paper. Aiming at the degradation problem of LeGO-LOAM when the vehicle state changes dramatically, the strategy of point cloud feature extraction and sensor fusion are proposed to adapt the motion characteristics of the field mobile robot, the optimization function is composed of IMU pre-integration and scan-to-map of LiDAR, then the state of robot is updated. Finally, the field experiments are implemented when the robot makes a fast turning or steering in limited time, the proposed method are validated to provide more accurate estimation of initial values and states compared to LeGO-LOAM related approaches.

参考文献/References:

[1] HIDALGO-CARRIó J, POULAKIS P, KIRCHNER F. Adaptive localization and mapping with application to planetary rovers[J]. Journal of field robotics, 2018, 35(6): 961-987.
[2] YOUNG S H, MAZZUCHI T A, SARKANI S. A framework for predicting future system performance in autonomous unmanned ground vehicles[J]. IEEE transactions on systems, man, and cybernetics: systems, 2017, 47(7): 1192-1206.
[3] 陈成, 何玉庆, 卜春光, 等. 基于四阶贝塞尔曲线的无人车可行轨迹规划[J]. 自动化学报, 2015, 41(3): 486-496
CHEN Cheng, HE Yuqing, BU Chunguang, et al. Feasible trajectory generation for autonomous vehicles based on quartic bezier curve[J]. acta automatica sinica, 2015, 41(3): 486-496
[4] 倪志康, 厉茂海, 林睿, 等. 基于三维激光雷达与RTK融合的SLAM研究[J]. 制造业自动化, 2020, 42(7): 51-54
NI Zhikang, LI Maohai, LIN Rui, et al. Research on SLAM based on 3D Lidar and RTK fusion[J]. Manufacturing automation, 2020, 42(7): 51-54
[5] CADENA C, CARLONE L, CARRILLO H, et al. Past, present, and future of simultaneous localization and mapping: toward the robust-perception age[J]. IEEE transactions on robotics, 2016, 32(6): 1309-1332.
[6] YE H, CHEN Y, LIU M. Tightly coupled 3D lidar inertial odometry and mapping[C]//Proceedings of 2019 IEEE International Conference on Robotics and Automation. Montreal, Canada, 2019: 3144-3150.
[7] ZHANG J, SINGH S. Laser-visual-inertial odometry and mapping with high robustness and low drift[J]. Journal of field robotics, 2018, 35(8): 1242-1264.
[8] SHAN T, ENGLOT B. LeGO-LOAM: lightweight and ground-optimized lidar odometry and mapping on variable terrain[C]//Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid, Spain, 2018: 4758-4765.
[9] HESS W, KOHLER D, RAPP H, et al. Real-time loop closure in 2D LIDAR SLAM[C]//Proceedings of 2016 IEEE International Conference on Robotics and Automation. Stockholm, Sweden, 2016: 1271-1278.
[10] FORSTER C, CARLONE L, DELLAERT F, et al. On-manifold preintegration for real-time visual-inertial odometry[J]. IEEE transactions on robotics, 2017, 33(1): 1-21.
[11] BOSSE M, ZLOT R, FLICK P. Zebedee: design of a spring-mounted 3-D range sensor with application to mobile mapping[J]. IEEE transactions on robotics, 2012, 28(5): 1104-1119.
[12] 李帅鑫, 李广云, 王力, 等. Lidar/IMU 紧耦合的实时定位方法[J/OL]. 自动化学报, https://doi.org/10.16383/j.aas.c190424.
LI Shuaixin, LI Guangyun, WANG Li, et al. Lidar/IMU tightly coupled real-time localization method[J/OL]. Acta automatica sinica, https://doi.org/10.16383/j.aas.c190424.
[13] CHEN C, HE Y, GU F, et al. A Real-time relative probabilistic mapping algorithm for high-speed off-road autonomous driving[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany, 2015: 6252-6258.
[14] GENTIL C L, VIDAL-CALLEJA T, HUANG S. 3D lidar-IMU calibration based on upsampled preintegrated measurements for motion distortion correction[C]//Proceedings of 2018 IEEE International Conference on Robotics and Automation. Brisbane, Australia, 2018: 2149-2155.
[15] GAO H, ZHANG X, YUAN J, et al. A novel global localization approach based on structural unit encoding and multiple hypothesis tracking[J]. IEEE transactions on instrumentation and measurement, 2019, 68(11): 4427-4442.
[16] ZHAO S, FANG Z, LI H, et al. A robust laser-inertial odometry and mapping method for large-scale highway environments[C]//Proceedings of 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems. Macau, China, 2019: 1285-1292.
[17] NEUHAUS F, TILMAN K, ROBERT K, et al. MC2SLAM: Real-time inertial lidar odometry using two-scan motion compensation[C]//Proceedings of 2018 German Conference on Pattern Recognition, Stuttgart, Germany, 2018: 60-72.
[18] 张雪涛, 方勇纯, 张雪波, 等. 基于误差状态卡尔曼滤波估计的旋翼无人机输入饱和控制[J]. 机器人, 2020, 42(4): 394-405
ZHANG Xuetao, FANG Yongchun, ZHANG Xuebo, et al. Error state Kalman filter estimator based input saturated control for rotorcraft unmanned aerial vehicle[J]. robot, 2020, 42(4): 394-405
[19] SHAN T, ENGLOT B, MEYERS D, et al. LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping[C]//Proceedings of 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas, USA, 2020: 1-8.
[20] KAESS M, RANGANATHAN A, DELLAERT F. iSAM: incremental smoothing and mapping[J]. IEEE transactions on robotics, 2008, 24(6): 1365-78.
[21] BLOESCH M, BURRI M, OMARI S, et al. Iterated extended Kalman filter based visual-inertial odometry using direct photometric feedback[J]. The international journal of robotics research, 2017, 36(10): 1053-72.
[22] MERRIAUX P, DUPUIS Y, BOUTTEAU R, et al. Robust robot localization in a complex oil and gas industrial environment[J]. Journal of field robotics, 2018, 35(2): 213-30.
[23] HEMANN G, SINGH S, KAESS M. Long-range GPS-denied aerial inertial navigation with LIDAR localization[C]//Proceedings of 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems. Daejeon, Korea, 2016: 1659-1666.
[24] WAN G, YANG X, CAI R, et al. Robust and precise vehicle localization based on multi-sensor fusion in diverse city scenes[C]//Proceedings of 2018 IEEE International Conference on Robotics and Automation. Brisbane, Australia, 2018: 4670-4677.
[25] SHAMSELDIN T, MANERIKAR A, ELBAHNASAWY M, et al. SLAM-based Pseudo-GNSS/INS localization system for indoor liDAR mobile mapping systems[C]//Proceedings of 2018 IEEE/ION Position, Location and Navigation Symposium. Monterey, USA, 2018: 197-208.
[26] JI K, CHEN H, DI H, et al. CPFG-SLAM: a robust simultaneous localization and mapping based on LIDAR in off-road environment[C]//Proceedings of 2018 IEEE Intelligent Vehicles Symposium (IV). Changshu, China, 2018: 650-655.
[27] HANTEN R, KUHLMANN P, OTTE S, et al. Robust real-time 3D person detection for indoor and outdoor applications[C]//Proceedings of 2018 IEEE International Conference on Robotics and Automation. Brisbane, Australia, 2018: 2000-2006.
[28] SHAO W, VIJAYARANGAN S, LI C, et al. Stereo visual inertial LiDAR simultaneous localization and mapping[C]//Proceedings of 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems. Macau, China, 2019: 370-377.
[29] PANG F, CHEN Z, PU L, et al. Depth enhanced visual-inertial odometry based on multi-state constraint Kalman filter[C]//Proceedings of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver, Canada, 2017: 1761-1767.
[30] LEUTENEGGER S, LYNEN S, BOSSE M, et al. Keyframe-based visual-inertial odometry using nonlinear optimization[J]. The international journal of robotics research, 2014, 34(3): 314-334.

相似文献/References:

[1]蔡自兴,王 勇,王 璐.基于角点聚类的移动机器人自然路标检测与识别[J].智能系统学报,2006,1(01):52.
 CAI Zi-xing,WANG Yong,WANG Lu.Corner clustering based detection and recognition of natural landmark for mobile robot[J].CAAI Transactions on Intelligent Systems,2006,1(4):52.
[2]杨甜甜,刘志远,陈 虹,等.移动机器人编队控制的现状与问题[J].智能系统学报,2007,2(04):21.
 YANG Tian-tian,LIU Zhi-yuan,CHEN Hong,et al.Formation control of mobile robots: state and open prob lems[J].CAAI Transactions on Intelligent Systems,2007,2(4):21.
[3]李润伟,蔡自兴,童宇,等.基于ATM的提高狭窄环境探测精度的改进方法[J].智能系统学报,2008,3(04):283.
 LI Run-wei,CAI Zi-xing,TONG Yu.Improving the accuracy of exploring the narrow environment by using ATM[J].CAAI Transactions on Intelligent Systems,2008,3(4):283.
[4]霍成立,谢 凡,秦世引.面向室内移动机器人的无迹滤波实时导航方法[J].智能系统学报,2009,4(04):295.
 HUO Cheng-li,XIE Fan,QIN Shi-yin.A case study in realtime UKFbased navigation for indoor autonomous travel of mobile robots[J].CAAI Transactions on Intelligent Systems,2009,4(4):295.
[5]海 丹,李 勇,张 辉,等.无线传感器网络环境下基于粒子滤波的移动机器人SLAM算法[J].智能系统学报,2010,5(05):425.[doi:10.3969/j.issn.1673-4785.2010.05.008]
 HAI Dan,LI Yong,ZHANG Hui,et al.Simultaneous localization and mapping of a mobile robot in wireless sensor networks based on particle filtering[J].CAAI Transactions on Intelligent Systems,2010,5(4):425.[doi:10.3969/j.issn.1673-4785.2010.05.008]
[6]房立金,王洪光.架空线移动机器人行走越障特点[J].智能系统学报,2010,5(06):492.
 FANG Li-jin,WANG Hong-guang.Research on the characteristics of the movement and obstacleclearing processes of a wiresuspended mobile robot[J].CAAI Transactions on Intelligent Systems,2010,5(4):492.
[7]任立敏,王伟东,杜志江.移动机器人队形控制关键技术及其进展[J].智能系统学报,2013,8(05):381.[doi:10.3969/j.issn.1673-4785.201302011]
 REN Limin,WANG Weidong,DU Zhijiang.Key technologies and development of formation control of mobile robots[J].CAAI Transactions on Intelligent Systems,2013,8(4):381.[doi:10.3969/j.issn.1673-4785.201302011]
[8]贺超,刘华平,孙富春,等.采用Kinect的移动机器人目标跟踪与避障[J].智能系统学报,2013,8(05):426.[doi:10.3969/j.issn.1673-4785.201301028]
 HE Chao,LIU Huaping,SUN Fuchun,et al.Target tracking and obstacle avoidance of mobile robot using Kinect[J].CAAI Transactions on Intelligent Systems,2013,8(4):426.[doi:10.3969/j.issn.1673-4785.201301028]
[9]阮晓钢,庞涛,张晓平,等.一种基于情感智能的机器人自主趋光行为研究[J].智能系统学报,2015,10(01):97.[doi:10.3969/j.issn.1673-4785.201312035]
 RUAN Xiaogang,PANG Tao,ZHANG Xiaoping,et al.Research on the autonomous phototaxis behavior of a robot based on emotion intelligence[J].CAAI Transactions on Intelligent Systems,2015,10(4):97.[doi:10.3969/j.issn.1673-4785.201312035]
[10]沈博闻,于宁波,刘景泰.仓储物流机器人集群的智能调度和路径规划[J].智能系统学报,2014,9(06):659.[doi:10.3969/j.issn.1673-4785.201312048]
 SHEN Bowen,YU Ningbo,LIU Jingtai.Intelligent scheduling and path planning of warehouse mobile robots[J].CAAI Transactions on Intelligent Systems,2014,9(4):659.[doi:10.3969/j.issn.1673-4785.201312048]

备注/Memo

备注/Memo:
收稿日期:2020-08-20。
基金项目:国家自然科学基金项目(61903202),国家重点研发计划项目(2018YFB1307503,2018YFB1309003)
作者简介:宋锐,助理研究员,博士,主要研究方向为环境感知与移动机器人SLAM。主持国家自然科学基金项目1项,发表学术论文10余篇;方勇纯,教授,博士生导师,中国自动化学会理事,南开大学人工智能学院院长,长江学者特聘教授,人工智能学会智库首批专家。主要研究方向为机器人视觉控制、欠驱动吊运系统控制、仿生机器人运动控制和微纳米操作。主持国家重点研发计划项目、国家基金重点项目、“十二五”国家技术支撑计划课题、国家基金仪器专项等项目。获国家杰出青年科学基金资助,吴文俊人工智能自然科学奖一等奖、天津市专利奖金奖、天津市自然科学一等奖、高等教育教学成果一等奖等多项奖励,发表学术论文 100 余篇;刘辉,硕士研究生,主要研究方向为移动机器人SLAM
通讯作者:方勇纯.E-mail:fangyc@nankai.edu.cn
更新日期/Last Update: 2020-07-25