[1]张威,葛泉波,刘华平,等.室外未知环境下的AGV地貌主动探索感知[J].智能系统学报,2021,16(1):152-161.[doi:10.11992/tis.202007025]
 ZHANG Wei,GE Quanbo,LIU Huaping,et al.AGV active landform exploration and perception in an unknown outdoor environment[J].CAAI Transactions on Intelligent Systems,,16():152-161.[doi:10.11992/tis.202007025]
点击复制

室外未知环境下的AGV地貌主动探索感知

参考文献/References:
[1] MISHKIN A, LAUBACH S. From prime to extended mission:evolution of the MER tactical uplink process[C]//Proceedings of SpaceOps 2006 Conference. Rome, Italy, 2006.
[2] BROOKS C A. Learning to visually predict terrain properties for planetary rovers[D]. Cambridge:Massachusetts Institute of Technology, 2009:15-16.
[3] WILCOX B H. Non-geometric hazard detection for a Mars microrover[C]//Proceedings of 1994 NASA/AIAA Conference on Intelligent Robotics in Field. Houston, TX, USA, 1994:675-684.
[4] OTTE S, LAIBLE S, HANTEN R, et al. Robust visual terrain classification with recurrent neural networks[C]//Proceedings of 2015 European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges, Belgium, 2015:22-24.
[5] ZELTE F. Autonomous terrain classification through unsupervised learning[D]. University of Wurzburg, 2016.
[6] ROTHROCK B, PAPON J, KENNEDY R, et al. SPOC:deep learning-based terrain classification for mars rover missions[C]//Proceedings of 2016 AIAA Space Forum. Long Beach, CA, USA, 2016.
[7] HE Chu, LIU Xinlong, FENG Di, et al. Hierarchical terrain classification based on multilayer Bayesian network and conditional random field[J]. Remote sensing, 2017, 9(1):96.
[8] WU Hang, LIU Baozhen, SU Weihua, et al. Optimum pipeline for visual terrain classification using improved bag of visual words and fusion methods[J]. Journal of sensors, 2017:8513949.
[9] LALONDE J F, VANDAPEL N, HUBER D F, et al. Natural terrain classification using three-dimensional ladar data for ground robot mobility[J]. Journal of field robotics, 2006, 23(10):839-861.
[10] SUGER B, STEDER B, BURGARD W. Traversability analysis for mobile robots in outdoor environments:a semi-supervised learning approach based on 3D-lidar data[C]//Proceedings of 2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle, WA, USA, 2015.
[11] KOLVENBACH H, B?RTSCHI C, WELLHAUSEN L, et al. Haptic inspection of planetary soils with legged robots[J]. IEEE robotics and automation letters, 2019, 4(2):1626-1632.
[12] MANDUCHI R, CASTANO A, TALUKDER A, et al. Obstacle detection and terrain classification for autonomous off-road navigation. Auton[J]. Autonomous robots, 2005, 18(1):81-102.
[13] SANTAMARIA-NAVARRO à, TENIENTE E H, MORTA M, et al. Terrain classification in complex three-dimensional outdoor environments[J]. Journal of field robotics, 2015, 32(1):42-60.
[14] ZHAO Kai, DONG Mingming, GU Liang. A new terrain classification framework using proprioceptive sensors for mobile robots[J]. Mathematical problems in engineering, 2017:3938502.
[15] PARK J, MIN K, KIM H, et al. Road surface classification using a deep ensemble network with sensor feature selection[J]. Sensors, 2018, 18(12):4342.
[16] ROSENFELD R D, RESTREPO M G, GERARD W H, et al. Unsupervised surface classification to enhance the control performance of a UGV[C]//Proceedings of 2018 IEEE Systems and Information Engineering Design Symposium. Charlottesville, VA, USA, 2018.
[17] IAGNEMMA K D, DUBOWSKY S. Terrain estimation for high-speed rough-terrain autonomous vehicle navigation[C]//Proceedings of SPIE 4715, Unmanned Ground Vehicle Technology IV. Orlando, FL, United States, 2002.
[18] BROOKS C A, IAGNEMMA K. Vibration-based terrain classification for planetary exploration rovers[J]. IEEE transactions on robotic, 2005, 21(6):1185-1191.
[19] BROOKS C A, IAGNEMMA K. Self-supervised terrain classification for planetary surface exploration rovers[J]. Journal of field robotics, 2012, 29(3):445-468.
[20] OJEDA L, BORENSTEIN J, WITUS G, et al. Terrain characterization and classification with a mobile robot[J]. Journal of field robot, 2006, 2:103-122.
[21] WONG C, YANG Erfu, YAN Xiutian, et al. Adaptive and intelligent navigation of autonomous planetary rovers-a survey[C]//Proceedings of 2017 NASA/ESA Conference on Adaptive Hardware and Systems (AHS). Pasadena, CA, USA, 2017:237-244.
[22] ZHANG Shuo, LIU Shaochuang, MA Youqing, et al. Self calibration of the stereo vision system of the Chang’e-3 lunar rover based on the bundle block adjustment[J]. ISPRS journal of photogrammetry and remote sensing, 2017, 128:287-297.
[23] WEISS C, FROHLICH H, ZELL A. Vibration-based terrain classification using support vector machines[C]//In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Beijing, China, 2006:4429-4434.
[24] WEISS C, FROHLICH H, ZELL A. Vibration-based terrain classification using support vector machines[C]//Proceedings of 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China, 2006:4429-4434
[25] VICENTE A, LIU Jindong, YANG Guangzhong. Surface classification based on vibration on omni-wheel mobile base[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany, 2015:916-921.
[26] BAI Chengchao, GUO Jifeng, GUO Linli, et al. Deep multi-layer perception based terrain classification for planetary exploration rovers[J]. Sensors, 2019,19(4):3102.
[27] LUO Shan, BIMBO J, DAHIYA R, et al. Robotic tactile perception of object properties:a review[J]. Mechatronics, 2017, 48:54-67.
[28] KOZLOWSKI P, WALAS K. Deep neural networks for Terrain recognition task[C]//Proceedings of 2018 Baltic URSI Symposium. Poznan, Poland, 2018:283-286.
[29] Lomio F, Skenderi E, Mohamadi D, et al. Surface type classification for autonomous robot indoor navigation[J]. arXiv 2019, arXiv:1905.00252v1.
[30] MARTINEZ-HERNANDEZ U, DODD T J, PRESCOTT T J. Feeling the shape:active exploration behaviors for object recognition with a robotic hand[J]. IEEE transactions on systems, man, and cybernetics:systems, 2017, 48(12):2339-2348.
[31] OUDEYER P Y, KAPLAN F, HAFNER V V. Intrinsic motivation systems for autonomous mental development[J]. IEEE transactions on evolutionary computation, 2007, 11(2):265-286.
[32] GOTTLIEB J, OUDEYER P Y, LOPES M, et al. Information-seeking, curiosity, and attention:computational and neural mechanisms[J]. Information-seeking, curiosity, and attention:computational and neural mechanisms, 2013, 17(11):585-593.
相似文献/References:
[1]蔡自兴,王 勇,王 璐.基于角点聚类的移动机器人自然路标检测与识别[J].智能系统学报,2006,1(1):52.
 CAI Zi-xing,WANG Yong,WANG Lu.Corner clustering based detection and recognition of natural landmark for mobile robot[J].CAAI Transactions on Intelligent Systems,2006,1():52.
[2]杨甜甜,刘志远,陈 虹,等.移动机器人编队控制的现状与问题[J].智能系统学报,2007,2(4):21.
 YANG Tian-tian,LIU Zhi-yuan,CHEN Hong,et al.Formation control of mobile robots: state and open prob lems[J].CAAI Transactions on Intelligent Systems,2007,2():21.
[3]李润伟,蔡自兴,童宇,等.基于ATM的提高狭窄环境探测精度的改进方法[J].智能系统学报,2008,3(4):283.
 LI Run-wei,CAI Zi-xing,TONG Yu.Improving the accuracy of exploring the narrow environment by using ATM[J].CAAI Transactions on Intelligent Systems,2008,3():283.
[4]霍成立,谢 凡,秦世引.面向室内移动机器人的无迹滤波实时导航方法[J].智能系统学报,2009,4(4):295.
 HUO Cheng-li,XIE Fan,QIN Shi-yin.A case study in realtime UKFbased navigation for indoor autonomous travel of mobile robots[J].CAAI Transactions on Intelligent Systems,2009,4():295.
[5]海 丹,李 勇,张 辉,等.无线传感器网络环境下基于粒子滤波的移动机器人SLAM算法[J].智能系统学报,2010,5(5):425.[doi:10.3969/j.issn.1673-4785.2010.05.008]
 HAI Dan,LI Yong,ZHANG Hui,et al.Simultaneous localization and mapping of a mobile robot in wireless sensor networks based on particle filtering[J].CAAI Transactions on Intelligent Systems,2010,5():425.[doi:10.3969/j.issn.1673-4785.2010.05.008]
[6]房立金,王洪光.架空线移动机器人行走越障特点[J].智能系统学报,2010,5(6):492.
 FANG Li-jin,WANG Hong-guang.Research on the characteristics of the movement and obstacleclearing processes of a wiresuspended mobile robot[J].CAAI Transactions on Intelligent Systems,2010,5():492.
[7]任立敏,王伟东,杜志江.移动机器人队形控制关键技术及其进展[J].智能系统学报,2013,8(5):381.[doi:10.3969/j.issn.1673-4785.201302011]
 REN Limin,WANG Weidong,DU Zhijiang.Key technologies and development of formation control of mobile robots[J].CAAI Transactions on Intelligent Systems,2013,8():381.[doi:10.3969/j.issn.1673-4785.201302011]
[8]贺超,刘华平,孙富春,等.采用Kinect的移动机器人目标跟踪与避障[J].智能系统学报,2013,8(5):426.[doi:10.3969/j.issn.1673-4785.201301028]
 HE Chao,LIU Huaping,SUN Fuchun,et al.Target tracking and obstacle avoidance of mobile robot using Kinect[J].CAAI Transactions on Intelligent Systems,2013,8():426.[doi:10.3969/j.issn.1673-4785.201301028]
[9]阮晓钢,庞涛,张晓平,等.一种基于情感智能的机器人自主趋光行为研究[J].智能系统学报,2015,10(1):97.[doi:10.3969/j.issn.1673-4785.201312035]
 RUAN Xiaogang,PANG Tao,ZHANG Xiaoping,et al.Research on the autonomous phototaxis behavior of a robot based on emotion intelligence[J].CAAI Transactions on Intelligent Systems,2015,10():97.[doi:10.3969/j.issn.1673-4785.201312035]
[10]沈博闻,于宁波,刘景泰.仓储物流机器人集群的智能调度和路径规划[J].智能系统学报,2014,9(6):659.[doi:10.3969/j.issn.1673-4785.201312048]
 SHEN Bowen,YU Ningbo,LIU Jingtai.Intelligent scheduling and path planning of warehouse mobile robots[J].CAAI Transactions on Intelligent Systems,2014,9():659.[doi:10.3969/j.issn.1673-4785.201312048]

备注/Memo

收稿日期:2020-07-12。
基金项目:国家自然科学基金项目(61773147,U1509203);浙江省自然科学基金项目(LR17F030005)
作者简介:张威,硕士研究生,主要研究方向为移动机器人控制、感知与学习;刘华平,副教授,博士生导师,中国人工智能学会理事、中国人工智能学会认知系统与信息处理专业委员会秘书长,主要研究方向为机器人感知、学习与控制、多模态信息融合。主持国家自然科学基金重点项目2项。发表学术 论文340余篇;孙富春,教授,博士生导师,中国人工智能学会副理事长,主要研究方向为智能控制与机器人、多模态数据感知、模式识别。IEEE Fellow,国家863计划专家组成员,荣获吴文俊科学技术奖创新奖一等奖、吴文俊科学技术奖进步奖一等奖。发表学术论文200余篇,出版专著3部、译书1部出版专著3部,译书1部.
通讯作者:刘华平. E-mail:hpliu@tsinghua.edu.cn

更新日期/Last Update: 2021-02-25
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134