[1]叶玲,李太华,代学武.无线传感器网络环境下基于卡尔曼滤波的PTP协议[J].智能系统学报,2012,7(06):518-524.
 YE Ling,LI Taihua,DAI Xuewu.Kalman filtering based precision time protocol (PTP) in wireless sensor networks[J].CAAI Transactions on Intelligent Systems,2012,7(06):518-524.
点击复制

无线传感器网络环境下基于卡尔曼滤波的PTP协议(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第7卷
期数:
2012年06期
页码:
518-524
栏目:
出版日期:
2012-12-25

文章信息/Info

Title:
Kalman filtering based precision time protocol (PTP) in wireless sensor networks
文章编号:
1673-4785(2012)06-0518-07
作者:
叶玲李太华代学武
西南大学 电子信息工程学院,重庆 400715
Author(s):
YE Ling LI Taihua DAI Xuewu
School of Electronic and Information Engineering, Southwest University, Chongqing 400715, China
关键词:
精确时间同步协议卡尔曼滤波无线传感器网络自回归模型状态空间模型
Keywords:
precision time synchronization Kalman filter wireless sensor networks AR model state space model
分类号:
TP393
文献标志码:
A
摘要:
作为分布式系统的重要组成部分,精确时间同步是对时间敏感的工业无线网络的核心技术.基于时间信息包交换的IEEE 1588精确时间同步协议(PTP)主要针对有线网络提出,其同步精度受制于时间戳的精度和传输延迟抖动.在无线传感网中,节点难以获取精确时钟戳,同时由于信道共享、包冲突和信道衰落,无线网络的传输延迟抖动非常明显. 研究了无线网络中PTP的性能与时间戳精度之间的关系,提出了一个自回归模型来描述时钟漂移,将PTP中的包交换过程抽象为一组状态空间方程,将延迟抖动等作为观测噪音,从而利用卡尔曼滤波器予以滤除.仿真结果表明,在不同时间戳精度和延迟抖动下,卡尔曼滤波能有效改善时钟误差和稳定性.
Abstract:
As a key technique in any distributed system, precision time synchronization plays a core role in timesensitive industrial wireless networks. Based on the time package exchange techniques, the IEEE 1588 Precision time protocol (PTP) is developed for wired Ethernet and its performance is degraded by the precision of time stamping and jitters of transmission delay. However, in wireless sensor network, it is difficult for the lowcost node to acquire accurate time stamps. Due to the sharing of wireless channel, transmission collision and severe fading, the jitters in WSN are overwhelming. In this paper, the relationship between PTP performance and precision of time stamping in wireless network is investigated. The drifting clock is modeled by an autoregressive (AR) model and the package exchanging behavior of PTP is abstracted as a set of state space equations. This allows the uncertainties of time stamping and jitters are treated as observation noises, which can be removed by the mature Kalman filter. The simulation results show that the proposed Kalman filtering technique improves the time synchronization, in terms of clock estimation error and clock stability, under various conditions of time stamping uncertainties and jitters.

参考文献/References:

[1]SUNDARARAMAN B, BUY U, KSHEMKALYANI A D. Clock synchronization for wireless sensor networks: a survey[J]. Ad Hoc Networks, 2005, 3(3): 281323.
[2]CAPKUN S, CAGALJ M, SRIVASTAVA M. Secure localization with hidden and mobile base stations[C]// Proceedings of 25th IEEE International Conference on Computer Communications. Barcelona, Spain, 2006: 110.
[3]MUDUMBAI R, BARRIAC G, MADHOW U. On the feasibility of distributed beamforming in wireless networks[J]. IEEE Transactions on Wireless Communications, 2007, 6(5): 17541763.
[4]LIU Q, LIU X, ZHOU J, et al. Adasynch: a general adaptive clock synchronization scheme based on Kalman filter for WSNs[J]. Wireless Personal Communications, 2012, 63(1): 217239.
[5]GANERIWAL S, KUMAR R, SRIVASTAVA M B. Timingsync protocol for sensor networks[C]//The First ACM Conference on Embedded Networked Sensor System. New York, USA, 2003: 138149.
[6]MAROTI M. The flooding time synchronization protocol[C]//Proc 2nd ACM Conf Embedded Networked Sensor Systems. New York, USA, 2004: 3949.
[7]PING S. Delay measurement time synchronization for wireless sensor networks IRBTR03013[R].Berkeley: Intel Research, 2003.
[8]ELSON J, GIROD L, ESTRIN D. Finegained network time synchronization using reference broadcasts[C]// Proc fifth Symposium on Operating Systems Design and Implementation. New York, USA, 2002: 147163.
[9]ZENG Y, HU B, LIU S. Vector Kalman filter using multiple parents for time synchronization in multihop sensor networks[C]//Proc of the IEEE SECON. San Francisco, USA, 2008: 413421.
[10]EIDSON J C, FISCHER M, WHITE J. IEEE 1588 standard for a precision clock synchronization protocol for networked measurement and control systems[S]// IEC 61588(E):2004IEEE Std. 1588(E), 2002.
[11]GALLEANI L, SACERDOTE L, TAVELLA P, et al. A mathematical model for the atomic clock error[J]. Metrologia, 2003, 40(3): 257264.
[12]HAMITON B R, MA X, ZHAO Q, et al. Aces: adaptive clock estimation and synchronization using Kalman filtering[C]//Proceedings of the 14th ACM International Conference on Mobile Computing and Networking. New York, USA, 2008: 152162.
[13]ABUBAKARI H, SASTRA S. IEEE 1588 style synchronization over wireless link[C]//Proc IEEE ISPCS. Ann Arbor, USA, 2008: 127130.
[14]BARENDT N, CORRELL K, BRANICKY M. Servo design considerations for softwareonly implementations of the precision time protocol[C]//ISPCS. Zurich, Switzerland, 2005: 1012.
[15]SAVVIDES A, HAN C, SRIVASTAVA M. Dynamic finegrained localization in adhoc networks of sensors[C]//Proceedings of the 7th Annual International Conference on Mobile Computing and Networking. New York, USA, 2001: 166179.

相似文献/References:

[1]李 晔,常文田,万 磊,等.水下机器人自适应卡尔曼滤波技术研究[J].智能系统学报,2006,1(02):44.
 LI Ye,CHANG Wen-tian,WAN Lei,et al.Research on underwater vehicle adaptive Kalman filter[J].CAAI Transactions on Intelligent Systems,2006,1(06):44.
[2]李大伟,贾鹏飞,李卫国,等.一种基于卡尔曼滤波与模糊算法的变电站机器人组合导航及控制系统设计[J].智能系统学报,2013,8(03):226.
 LI Dawei,JIA Pengfei,LI Weiguo,et al.A kind of integrated navigation and control system design for substation robot based on the Kalman filtering and fuzzy algorithm[J].CAAI Transactions on Intelligent Systems,2013,8(06):226.
[3]袁健,周忠海,金光虎,等.基于卡尔曼滤波的自主式水下航行器大尺度编队控制[J].智能系统学报,2013,8(04):344.[doi:10.3969/j.issn.1673-4785.201304033]
 YUAN Jian,ZHOU Zhonghai,JIN Guanghu,et al.Large-scale formation control for autonomous underwater vehicles based on Kalman filtering[J].CAAI Transactions on Intelligent Systems,2013,8(06):344.[doi:10.3969/j.issn.1673-4785.201304033]
[4]马健,俞扬.一种基于全局位置估计误差的路标探索策略[J].智能系统学报,2014,9(03):313.[doi:10.3969/j.issn.1673-4785.201310014]
 MA Jian,YU Yang.Landmark exploration strategy using estimated global localization error[J].CAAI Transactions on Intelligent Systems,2014,9(06):313.[doi:10.3969/j.issn.1673-4785.201310014]
[5]欧伟奇,尹辉,许宏丽,等.一种基于Multi-Egocentric视频运动轨迹重建的多目标跟踪算法[J].智能系统学报,2019,14(02):246.[doi:10.11992/tis.201709003]
 OU Weiqi,YIN Hui,XU Hongli,et al.A multi-object tracking algorithm based on trajectory reconstruction on multi-egocentric video[J].CAAI Transactions on Intelligent Systems,2019,14(06):246.[doi:10.11992/tis.201709003]

备注/Memo

备注/Memo:
收稿日期: 2012-07-23.
网络出版日期:2012-11-16
.基金项目:国家自然科学基金资助项目(61101135); 西南大学基本科研业务费专项资金资助项目(XDJK2012C063). 
通信作者:李太华.
E-mail:catalyst@swu.edu.cn.
作者简介:
叶玲,女,1988年生,硕士研究生,主要研究方向为无线传感器网络.
李太华,男,1977年生,副教授,硕士生导师,主要研究方向为智能信号处理、无线传感器网络.
代学武,男,1976年生,副教授,硕士生导师,主要研究方向为智能信号处理、无线传感器网络.
更新日期/Last Update: 2013-03-19