[1]吴茜茵,严云洋,杜静,等.多特征融合的火焰检测算法[J].智能系统学报,2015,10(02):240-247.[doi:10.3969/j.issn.1673-4785.201406022]
 WU Xiyin,YAN Yunyang,DU Jing,et al.Fire detection based on fusion of multiple features[J].CAAI Transactions on Intelligent Systems,2015,10(02):240-247.[doi:10.3969/j.issn.1673-4785.201406022]
点击复制

多特征融合的火焰检测算法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第10卷
期数:
2015年02期
页码:
240-247
栏目:
出版日期:
2015-04-25

文章信息/Info

Title:
Fire detection based on fusion of multiple features
作者:
吴茜茵12 严云洋12 杜静12 高尚兵2 刘以安1
1. 江南大学 物联网工程学院, 江苏 无锡 214122;
2. 淮阴工学院 计算机工程学院, 江苏 淮安 223003
Author(s):
WU Xiyin12 YAN Yunyang12 DU Jing12 GAO Shangbing2 LIU Yi’an1
1. School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China;
2. Faculty of Computer Engineering, Huaiyin Institute of Technology, Huaian 223003, China
关键词:
特征提取特征融合支持向量机颜色模型火焰检测圆形度矩形度重心高度
Keywords:
feature extractionfeature fusionsupport vector machinecolor modelfire detectioncircularity measuresrectangularityorthocenter height
分类号:
TP391.41
DOI:
10.3969/j.issn.1673-4785.201406022
文献标志码:
A
摘要:
视频火焰检测是复杂场景下预防火灾的重要方法。为了提高火焰的检测效率和鲁棒性,基于RGB和HSI颜色空间改进了火焰的颜色特征模型,有效地提取了疑似火焰区域;实验对比分析了火焰不同的形状结构特征,及其特征组合对火焰检测有效性的影响,提出了一种融合圆形度、矩形度和重心高度系数的火焰检测算法,然后将融合后的火焰特征输入支持向量机(SVM)中进行分类。在Bilkent大学火灾视频库上的实验结果表明,该方法高效、快速,且能适用于多种场景。
Abstract:
Video fire detection is an important method to prevent fire disaster under complex circumstances. In order to improve the efficiency and robustness of fire detection, the color feature model can be improved based on RGB and HSI color space and the suspected flame area is extracted effectively. After analysis on the experimental results with different features of shape or structure of fire and the influence of their combined features on the validity of fire detection, a method of flame detection is proposed based on fusion of circularity, rectangularity and the coefficient of orthocenter height. Based on fusion of these flame features, the support vector machine (SVM) is used for classification. Experimental results on the fire videos at Bilkent University show that the proposed algorithm is efficient and fast for fire detection, and it could detect fire real-time under a variety of circumstances.

参考文献/References:

[1] SASIREKHA M S P, RAMYA M S, PRASANTH M R M, et al. A survey about automatic flame/fire detection in videos[J]. International Journal of Research in Advent Technology, 2014, 2(2): 145-150.
[2] ZHANG L, LIU X. Fire recognition based on multiple features of video images[C]//Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering. Paris, France, 2013: 1597-1600.
[3] 严云洋, 唐岩岩, 郭志波, 等. 融合色彩和轮廓特征的火焰检测[J]. 微电子学与计算机, 2011, 10: 137-141, 145.YAN Yunyang, TANG Yanyan, GUO Zhibo, et al. Fusion of flame color and its contour for fire detection[J]. Microelectronics & Computer, 2011, 10: 137-141, 145.
[4] CHEN L H, HUANG W C. Fire detection using spatial-temporal analysis[C]//Proceedings of the World Congress on Engineering. London, UK, 2013: 2222-2225.
[5] CHEN T H, WU P H, CHIOU Y C. An early fire-detection method based on image processing[C]//International Conference on Image Processing (ICIP).[S.l], China, 2004: 1707-1710.
[6] HABIBOGLU Y, GUNAY O, CETIN A E. Flame detection method in video using covariance descriptors[C]//IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP). Prague, Czech, 2011: 1817-1820.
[7] 王莹, 李文辉. 基于多特征融合的高精度视频火焰检测算法[J]. 吉林大学学报: 工学版, 2010(3): 769-775.WANG Ying, LI Wenhui. High-precision video flame detection algorithm based on multi-feature fusion[J]. Journal of Jilin University: Engineering and Technology Edition, 2010(3): 769-775.
[8] MENGXIN L I, WEJING X U, KE X U, et al. A new hybrid feature extraction method based on accurate motion area[J]. Journal of Electrical Engineering, 2013, 11(10): 5563-5570.
[9] CHEN J, HE Y, WANG J. Multi-feature fusion based fast video flame detection[J]. Building and Environment, 2010, 45(5): 1113-1122.
[10] 严云洋, 唐岩岩, 刘以安, 等. 使用多尺度LBP特征和SVM的火焰识别算法[J]. 山东大学学报: 工学版, 2012(5): 47-52, 58.YAN Yunyang, TANG Yanyan, LIU Yi’an, et al. Flame detection based on LBP features with multi-scales and SVM[J]. Journal of Shandong University: Engineering Science, 2012(5): 47-52, 58.
[11] LEI W, LIU J. Early fire detection in coalmine based on video processing[C]//International Conference on Communication, Electronics and Automation Engineering. Berlin, German, 2013: 239-245.
[12] YANG X, WANG J, HE S. A SVM approach for vessel fire detection based on image processing[C]//Proceedings of International Conference on Modelling, Identification & Control (ICMIC). Wuhan, China, 2012: 150-153.
[13] XI Z, FANG X, ZHEN S, et al. Video flame detection algorithm based on multi-feature fusion technique[C]// Control and Decision Conference (CCDC). Guiyang, China, 2012: 4291-4294.
[14] ZHAO J, ZHANG Z, HAN S, et al. SVM based forest fire detection using static and dynamic features[J]. Computer Science and Information Systems, 2011, 8(3):821-841.
[15] 闵永林. 大空间智能消防水炮灭火系统研究[D]. 上海: 上海大学, 2010: 58-73.MIN Yonglin. Intelligent water fire monitor systems applied in large space places[D]. Shanghai: Shanghai University, 2010: 58-73.
[16] XUAN T T, KIM J M. Fire flame detection in video sequences using multi-stage pattern recognition techniques[J]. Engineering Applications of Artificial Intelligence, 2012, 25(7): 1365-1372.
[17] OJALA T, PIETILAINEN M, MAENPAA T. Multi-resolution gray-scale and rotation invariant texture classification with local binary patterns[J]. Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.

相似文献/References:

[1]黄剑华,唐降龙,刘家锋,等.一种基于Homogeneity的文本检测新方法[J].智能系统学报,2007,2(01):69.
 HUANG Jian-hua,TANG Xiang-long,LIU Jia-feng,et al.A new method for text detection based on Homogeneity[J].CAAI Transactions on Intelligent Systems,2007,2(02):69.
[2]谭 营,朱元春.反垃圾电子邮件方法研究进展[J].智能系统学报,2010,5(03):189.
 TAN Ying,ZHU Yuan-chun.Advances in antispam techniques[J].CAAI Transactions on Intelligent Systems,2010,5(02):189.
[3]王斐,张育中,宁廷会,等.脑-机接口研究进展[J].智能系统学报,2011,6(03):189.
 WANG Fei,ZHANG Yuzhong,NING Tinghui,et al.Research progress in a braincomputer interface[J].CAAI Transactions on Intelligent Systems,2011,6(02):189.
[4]刘琚,孙建德.独立分量分析的图像/视频分析与应用[J].智能系统学报,2011,6(06):495.
 LIU Ju,SUN Jiande.Independent component analysisbased image/video analysis and applications[J].CAAI Transactions on Intelligent Systems,2011,6(02):495.
[5]谭营,王军.手指静脉身份识别技术最新进展[J].智能系统学报,2011,6(06):471.
 TAN Ying,WANG Jun.Recent advances in finger vein based biometric techniques[J].CAAI Transactions on Intelligent Systems,2011,6(02):471.
[6]吴家伟,严京旗,方志宏,等.基于图像显著性特征的铸坯表面缺陷检测[J].智能系统学报,2012,7(01):75.
 WU Jiawei,YAN Jingqi,FANG Zhihong,et al.Defect detection on a steel slab surface based on the characteristics of an image’s saliency region[J].CAAI Transactions on Intelligent Systems,2012,7(02):75.
[7]张毅,罗明伟,罗元.脑电信号的小波变换和样本熵特征提取方法[J].智能系统学报,2012,7(04):339.
 ZHANG Yi,LUO Mingwei,LUO Yuan.EEG feature extraction method based on wavelet transform and sample entropy[J].CAAI Transactions on Intelligent Systems,2012,7(02):339.
[8]刘忠宝,王士同.从Parzen窗核密度估计到特征提取方法:新的研究视角[J].智能系统学报,2012,7(06):471.
 LIU Zhongbao,WANG Shitong.From Parzen window estimation to feature extraction: a new perspective[J].CAAI Transactions on Intelligent Systems,2012,7(02):471.
[9]许可乐,唐涛,蒋咏梅.一种SAR图像稳健特征点提取方法[J].智能系统学报,2013,8(04):287.[doi:10.3969/j.issn.1673-4785.201304038]
 XU Kele,TANG Tao,JIANG Yongmei.A stable feature point extraction approach for SAR image registration[J].CAAI Transactions on Intelligent Systems,2013,8(02):287.[doi:10.3969/j.issn.1673-4785.201304038]
[10]陈阳,董肖莉,李卫军,等.基于仿生形象思维方法的图像检索算法的改进[J].智能系统学报,2015,10(02):209.[doi:10.3969/j.issn.1673-4785.201411022]
 CHEN Yang,DONG Xiaoli,LI Weijun,et al.Improvement of an image retrieval algorithm based on biomimetic imaginal thinking[J].CAAI Transactions on Intelligent Systems,2015,10(02):209.[doi:10.3969/j.issn.1673-4785.201411022]
[11]孙倩茹,王文敏,刘宏.视频序列的人体运动描述方法综述[J].智能系统学报,2013,8(03):189.
 SUN Qianru,WANG Wenmin,LIU Hong.Study of human action representation in video sequences[J].CAAI Transactions on Intelligent Systems,2013,8(02):189.
[12]柳培忠,阮晓虎,田震,等.一种基于多特征融合的视频目标跟踪方法[J].智能系统学报,2014,9(03):319.[doi:10.3969/j.issn.1673-4785.201309085]
 LIU Peizhong,RUAN Xiaohu,TIAN Zhen,et al.A video tracking method based on object multi-feature fusion[J].CAAI Transactions on Intelligent Systems,2014,9(02):319.[doi:10.3969/j.issn.1673-4785.201309085]
[13]路子祥,屠黎阳,祖辰,等.基于脑连接网络的阿尔茨海默病临床变量值预测[J].智能系统学报,2017,12(03):355.[doi:10.11992/tis.201607020]
 LU Zixiang,TU Liyang,ZU Chen,et al.Prediction of clinical variables in Alzheimer’s disease using brain connective networks[J].CAAI Transactions on Intelligent Systems,2017,12(02):355.[doi:10.11992/tis.201607020]
[14]吴钟强,张耀文,商琳.基于语义特征的多视图情感分类方法[J].智能系统学报,2017,12(05):745.[doi:10.11992/tis.201706026]
 WU Zhongqiang,ZHANG Yaowen,SHANG Lin.Multi-view sentiment classification of microblogs based on semantic features[J].CAAI Transactions on Intelligent Systems,2017,12(02):745.[doi:10.11992/tis.201706026]

备注/Memo

备注/Memo:
收稿日期:2014-6-13;改回日期:。
基金项目:教育部科学技术研究重大资助项目(311024);国家自然科学基金资助项目(61402192);江苏省“六大人才高峰”资助项目(2013DZXX-023);江苏省“333工程”资助项目;江苏省“青蓝工程”资助项目;淮安市“533工程”资助项目(BRA2013208);淮安市科技计划资助项目(HAG2013057,HAG2013059).
作者简介:吴茜茵,女,1990年生,硕士研究生,CCF会员,主要研究方向为数字图像处理、模式识别;严云洋,男,1967年生,教授,博士,江苏省计算机学会常务理事及人工智能专委会副主任委员,主要研究方向为数字图像处理、模式识别,发表学术论文80余篇,其中被SCI、EI收录40余篇;杜静,女,1988年生,硕士研究生,主要研究方向为数字图像处理、模式识别。
通讯作者:严云洋.E-mail:areyyyke@163.com.
更新日期/Last Update: 2015-06-15