LIU Zhongbao,WANG Shitong.From Parzen window estimation to feature extraction: a new perspective[J].CAAI Transactions on Intelligent Systems,2012,7(06):471-480.





From Parzen window estimation to feature extraction: a new perspective
1. 江南大学 数字媒体学院,江苏 无锡 214122;
2. 中北大学 电子与计算机科学技术学院,山西 太原 030051
LIU Zhongbao12 WANG Shitong1
1. School of Digital Media, Jiangnan University, Wuxi 214122, China;
2. School of Electronics and Computer Science Technology, North University of China, Taiyuan 030051, China
feature extraction Parzen window density estimation data distribution characteristics new perspective
Researches on current feature extraction methods are mainly based on two ways. One originates from geometric properties of highdimensional datasets and attempt to extract fewer features from the original data space according to a certain criterion. The other originates from dimension reduction deviation and try to make the deviation between data before and after dimension reduction be as small as possible. However, there exists almost no study about them from the perspective of the scatter change of a dataset. Based on Parzen window density estimator, we thoroughly revisit the relevant feature extraction methods from a new perspective and the relationships between Parzen window and classical feature extraction methods,ie length of perpendiculars (LPP), linear discriminant analysis (LDA) and principal component analysis (PCA) are built in this paper. Therefore, these feature extraction methods can be researched in the same Parzen window, which provides a new perspective for the research of feature extraction.


[1]WANG Qinghua, ZHANG Youyun, LEI Cai, et al. Fault diagnosis for diesel value trains based on nonnegative matrix factorization and neural network ensemble[J]. Mechanical Systems and Signal Processing, 2009, 23(5): 16831695.
[2]CAMACHO J, PIC J, FERRER A. Data understanding with PCA: structural and variance information plots[J]. Chemometrics and Intelligent Laboratory Systems, 2010, 100(1): 4856.
[3]LIPOVETSKY S. PCA and SVD with nonnegative loadings [J]. Pattern Recognition, 2009, 42(1): 6876.
[4]RADULOVIC J, RANKOVIC V. Feedforward neural network and adaptive networkbased fuzzy inference system in study of power lines[J]. Expert Systems with Applications, 2010, 37(1): 165170.
[5]PETER N B, JOAO P H, DAVID J K. Eigenfaces vs Fisherfaces: recognition using class specific linear projection[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711720.
[6]HU Y H, HE S H. Integrated evaluation method[M]. Beijing: Scientific Press, 2000: 2731.
[7]ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000(290): 23232326.
[8]BELKIN M, IYOGI P. Laplacian eigenmaps and spectral techniques for embedding and clustering[C]// Systems (NIPS). Cambridge: MIT NIYOGI P Press, 2001: 585591.〖JP〗
[9]BORGA M, KNUTSSON H. Canonical correlation analysis in early vision[C]//Proceedings of the 9th European Symposium on Artificial Neural Networks. Bruges, Belgium, 2001: 309314.
[10]HE X F, NIYOGI P. Locality preserving projections[C]// Advances in Neural Information Processing Systems (NIPS). Vancouver, Canada, 2003: 153160.
[11]皋军, 王士同, 邓赵红. 广义的势支撑特征选择GPSFM[J].计算机研究与发展, 2009, 46(1): 4151. 
GAO Jun, WANG Shitong, DENG Zhaohong. Generalized potential support vector machine for feature selection[J]. Computer Research and Development, 2009, 46(1): 4151.
[12]王晓明, 王士同. 广义的监督局部保留投影算法[J]. 电子与信息学报, 2009, 31(8): 18401845.
WANG Xiaoming, WANG Shitong. Generalized supervised locality preserving projection algorithm[J]. Electronics and Information, 2009, 31(8): 18401845.
[13]王超, 王士同. 有局部保持的最大间距准则特征提取方法[J]. 模式识别与人工智能, 2009, 22(6): 898902.
 WANG Chao, WANG Shitong. Maximum margin and locality preserving feature selection method[J]. Artificial Intelligence and Pattern Recognition, 2009, 22(6): 898902.
[14]ODIOWEI P P, YI Cao. Nonlinear dynamic process monitoring using canonical variate analysis and kernel density estimations[J]. IEEE Trans on Industrial Informatics, 2010, 6(1): 3645.
[15]吴葛铭,霍剑青,王晓蒲.一种基于加权Parzen窗的聚类算法[J]. 中国科学技术大学学报, 2002, 32(5): 546551. 
WU Geming, HUO Jianqing, WANG Xiaopu. Weighted Parzen window based clustering[J]. Journal of Chinease University of Sciences and Technologies, 2002, 32(5): 546551.
[16]HE X F, YAN S C, HU Y X, et al. Face recognition using Laplacianfaces[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328340.
[17]CAMACHO J, PIC J, FERRER A. Data understanding with PCA: structural and variance information plots[J]. Chemometrics and Intelligent Laboratory Systems, 2010, 100(1): 4856.
[18]边肇祺, 张学工. 模式识别[M]. 2版.北京清华大学出版社, 2000: 130. [19]GUO Q C, CHANG X J, CHU H X. Meanshift of variable window based on the Epanechnikov kernel[C]//Proceedings of IEEE Int Conf on Mechatronics and Automation. Piscataway, USA, 2007: 23142319.


 HUANG Jian-hua,TANG Xiang-long,LIU Jia-feng,et al.A new method for text detection based on Homogeneity[J].CAAI Transactions on Intelligent Systems,2007,2(06):69.
[2]谭 营,朱元春.反垃圾电子邮件方法研究进展[J].智能系统学报,2010,5(03):189.
 TAN Ying,ZHU Yuan-chun.Advances in antispam techniques[J].CAAI Transactions on Intelligent Systems,2010,5(06):189.
 WANG Fei,ZHANG Yuzhong,NING Tinghui,et al.Research progress in a braincomputer interface[J].CAAI Transactions on Intelligent Systems,2011,6(06):189.
 LIU Ju,SUN Jiande.Independent component analysisbased image/video analysis and applications[J].CAAI Transactions on Intelligent Systems,2011,6(06):495.
 TAN Ying,WANG Jun.Recent advances in finger vein based biometric techniques[J].CAAI Transactions on Intelligent Systems,2011,6(06):471.
 WU Jiawei,YAN Jingqi,FANG Zhihong,et al.Defect detection on a steel slab surface based on the characteristics of an image’s saliency region[J].CAAI Transactions on Intelligent Systems,2012,7(06):75.
 ZHANG Yi,LUO Mingwei,LUO Yuan.EEG feature extraction method based on wavelet transform and sample entropy[J].CAAI Transactions on Intelligent Systems,2012,7(06):339.
 YAN Xiaobo,WANG Shitong,GUO Huiling.Feature reduction of high order statistics based on Parzen window[J].CAAI Transactions on Intelligent Systems,2013,8(06):1.[doi:10.3969/j.issn.1673-4785.201210046]
 SUN Qianru,WANG Wenmin,LIU Hong.Study of human action representation in video sequences[J].CAAI Transactions on Intelligent Systems,2013,8(06):189.
 XU Kele,TANG Tao,JIANG Yongmei.A stable feature point extraction approach for SAR image registration[J].CAAI Transactions on Intelligent Systems,2013,8(06):287.[doi:10.3969/j.issn.1673-4785.201304038]


基金项目:国家自然科学基金资助项目(61170122, 61272210). 
更新日期/Last Update: 2013-03-19