[1]陈阳,董肖莉,李卫军,等.基于仿生形象思维方法的图像检索算法的改进[J].智能系统学报,2015,10(02):209-214.[doi:10.3969/j.issn.1673-4785.201411022]
 CHEN Yang,DONG Xiaoli,LI Weijun,et al.Improvement of an image retrieval algorithm based on biomimetic imaginal thinking[J].CAAI Transactions on Intelligent Systems,2015,10(02):209-214.[doi:10.3969/j.issn.1673-4785.201411022]
点击复制

基于仿生形象思维方法的图像检索算法的改进(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第10卷
期数:
2015年02期
页码:
209-214
栏目:
出版日期:
2015-04-25

文章信息/Info

Title:
Improvement of an image retrieval algorithm based on biomimetic imaginal thinking
作者:
陈阳1 董肖莉2 李卫军2 张丽萍2 覃鸿2
1. 工业和信息化部 中国电子信息产业发展研究院, 北京 100846;
2. 中国科学院半导体研究所 人工神经网络实验室, 北京 100083
Author(s):
CHEN Yang1 DONG Xiaoli2 LI Weijun2 ZHANG Liping2 QIN Hong2
1. China Center of Information Industry Development, Beijing 100846, China;
2. Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
关键词:
仿生形象思维图像检索颜色复杂度特征提取
Keywords:
biomimetic imaginal thinkingimage retrievalcolor complexity measurefeature extraction
分类号:
TP391.4
DOI:
10.3969/j.issn.1673-4785.201411022
文献标志码:
A
摘要:
基于仿生形象思维方法的图像检索算法主要是模仿人脑的形象思维对图像认知,从全新角度提取图像特征而设计的一种新算法。此算法把每幅图像都映射成高维空间一个点,通过计算点和点之间的判别函数得到图像之间的关系。该文利用最直接地描述图像内容的视觉特征,即颜色复杂度来提取图像特征,对基于仿生形象思维方法的图像检索算法做进一步研究与改进。实验结果表明该方法比文献[1]基于仿生形象思维方法的图像检索算法的特征提取方法效果有一定的提高。
Abstract:
In this paper, a novel image retrieval algorithm based on biomimetic imaginal thinking is used for image cognition by imitating human brain’s imaginal thinking and extracting image features from a different perspective. This algorithm maps every image onto a point in the high dimension space, deriving the relations of two images by calculating the discriminant function between the two points. The visual features that can describe image content directly, i.e. color complexity are used to extract image features, in order to improve the image retrieval algorithm based on biomimetic imaginal thinking. The experimental results showed that the performance of this algorithm is better than that of the algorithm proposed by reference [1].

参考文献/References:

[1] 王守觉, 孙华. 基于仿生形象思维方法的图像检索算法[J]. 电子学报, 2010, 38(5): 993-997.WANG Shoujue, SUN Hua. An image retrieval algorithm based on biomimetic imaginal thinking[J]. Acta Electronica Sinica, 2010, 38(5): 993-997.
[2] DATTA R, LI J, WANG J Z. Content-based image retrieval—approaches and trends of the new age[C]//Proceedings of the Seventh International Workshop on Multimedia Information Retrieval. Singapore, 2005: 253-262.
[3] 黄祥林, 沈兰荪. 基于内容的图像检索技术研究[J]. 电子学报, 2002, 30(7): 1065-1071. HUANG Xianglin, SHEN Lansun. Research on content-based image retrieval techniques[J]. Acta Electronica Sinica, 2002, 30(7): 1065-1071.
[4] VELTKAMP R C, TANASE M. Content-based image retrieval systems: a survey,UU-CS-2000-34[R]. Department of Computer Science, Utrech University, 2002.
[5] 陈晨. 基于颜色直方图的图像检索[J]. 哈尔滨师范大学自然科学学报, 2014, 30(2): 31-35.CHEN Chen. Image retrieval based oil color histogram[J]. Natural Sciences Journal of Harbin Normal University, 2014, 30(2): 31-35.
[6] 梁美丽, 牛之贤. 改进的综合颜色纹理特征图像检索[J]. 计算机应用与软件, 2014, 31(6): 228-231.LIANG Meili, NIU Zhixian. Improved image retrieval with integrated colour and texture features[J]. Computer Applications and Software, 2014, 31(6): 228-231.
[7] 宋卫华. 基于底层纹理特征的图像检索[J]. 长春工业大学学报: 自然科学版, 2014, 35(2): 135-138.SONG Weihua. Image retrieval based on low-level texture features[J]. Journal of Changchun University of Technology: Natural Science Edition, 2014, 35(2): 135-138.
[8] 黄祥林, 沈兰荪. 基于内容的图像检索技术研究[J]. 电子学报, 2002, 30(7): 1065-1071.HUANG Xianglin, SHEN Lansun. Research on content-based image retrieval techniques[J]. Acta Electronica Sinica, 2002, 30(7): 1065-1071.
[9] 曹建芳,陈俊杰,赵青杉. 基于多语义特征融合的图像检索[J]. 计算机技术与发展, 2014, 24(5): 134-138.CAO Jianfang, CHEN Junjie, ZHAO Qingshan. Image retrieval based on various semantic feature fusion[J]. Conputer Technology and Development, 2014, 24(5): 134-138.
[10] 庄凌,庄越挺,吴江琴, 等. 一种基于稀疏典型性相关分析的图像检索方法[J]. 软件学报,2012,23(5): 1295-1304.ZHUANG Ling, ZHUANG Yueting, WU Jiangqin, et al. Image retrieval approach based on sparse canonical correlation analysis[J]. Journal of Software, 2012, 23(5): 1295-1304.
[11] XIE H, ZHANG Y. Contextual query expansion for image retrieval[J]. IEEE Transactions on Multimedia, 2014, 16(4): 1104-1114.
[12] PAPUSHOY A, BORS A G. Image retrieval based on query by saliency content[J]. Digital Signal Processing, 2015, 36: 156-173.
[13] ZAND M, DORAISAMY S. Texture classification and discrimination for region-based image retrieval[J]. Journal of Visual Communication and Image Representation, 2015, 26: 305-316.
[14] WALIA E, VESAL S. An effective and fast hybrid framework for color image retrieval[J]. Sensing and Imaging, 2014, 15(1): 93-115.
[15] GUPTA A, JAIN R. Visual information retrieval[J]. Communications of the ACM, 1997, 40(5): 71-79.
[16] 王守觉, 来疆亮. 多维空间仿生信息学入门[M]. 北京:国防工业出版社, 2008: 1.
[17] 王守觉. 仿生模式识别(拓扑模式识别)——一种模式识别新模型的理论与应用[J].电子学报, 2002, 30(10): 1417-1420.WANG Shoujue. Bionic (topological) pattern recognition—a new model of pattern recognition theory and its applications[J]. Acta Electronica Sinica, 2002, 30(10): 1417-1420.
[18] 王守觉, 王柏南. 人工神经网络的多维空间几何及其理论[J]. 电子学报, 2002, 30(1): 1-4.WANG Shoujue, WANG Bainan. Analysis and theory of high dimensional space geometry for artificial neural networks[J]. Acta Electronica Sinica, 2002, 30(1): 1-4.
[19] WANG Shoujue, LAI Jiangliang. High dimensional imagery geometry and its applications[J]. Chinese Journal of Electronics, 2006, 15(4): 761-767.
[20] 李志欣, 施智平. 图像检索中语义映射方法综述[J]. 计算机辅助设计与图形学学报, 2008, 20(8): 1085-1096.LI Zhixin, SHI Zhiping. A survey of semantic mapping in image retrieval[J]. Journal of Computer-Aided Design and Computer Graphics, 2008, 20(8): 1085-1096.
[21] DATTA R, LI Jia, WANG J Z. Content-based image retrieval-approaches and trends of the new age[C]//Proceedings of the 7th International Workshop on Multimedia Information Retrieval. Singapore, 2005: 253-262.
[22] 于永健, 王向阳, 吴俊峰. 基于颜色复杂度的加权颜色直方图图像检索算法[J]. 小型微型计算机系统,2009, 30(3): 507-511. YU Yongjian, WANG Xiangyang, WU Junfeng. Weighted histogram color image retrieval based on color complexity measure[J]. Journal of Chinese Computer Systems, 2009, 30(3): 507-511.
[23] 成琳, 陈俊杰, 相洁. 图像颜色特征提取技术的研究与应用[J]. 计算机工程与设计, 2009, 30(14): 3451-3454. CHENG Lin, CHEN Junjie, XIANG Jie. Research and application of image color feature extraction technology[J]. Computer Engineering and Design, 2009, 30(14): 3451-3454.

相似文献/References:

[1]辛雨璇,闫子飞.基于手绘草图的图像检索技术研究进展[J].智能系统学报,2015,10(02):167.[doi:10.3969/j.issn.1673-4785.201401045]
 XIN Yuxuan,YAN Zifei.Research progress of image retrieval based on hand-drawn sketches[J].CAAI Transactions on Intelligent Systems,2015,10(02):167.[doi:10.3969/j.issn.1673-4785.201401045]
[2]龚震霆,陈光喜,任夏荔,等.基于卷积神经网络和哈希编码的图像检索方法[J].智能系统学报,2016,11(3):391.[doi:10.11992/tis.201603028]
 GONG Zhenting,CHEN Guangxi,REN Xiali,et al.An image retrieval method based on a convolutional neural network and hash coding[J].CAAI Transactions on Intelligent Systems,2016,11(02):391.[doi:10.11992/tis.201603028]
[3]杨晓兰,强彦,赵涓涓,等.基于医学征象和卷积神经网络的肺结节CT图像哈希检索[J].智能系统学报,2017,12(06):857.[doi:10.11992/tis.201706035]
 YANG Xiaolan,QIANG Yan,ZHAO Juanjuan,et al.Hashing retrieval for CT images of pulmonary nodules based on medical signs and convolutional neural networks[J].CAAI Transactions on Intelligent Systems,2017,12(02):857.[doi:10.11992/tis.201706035]
[4]阿丽亚·巴吐尔,努尔毕亚·亚地卡尔,吾尔尼沙·买买提,等.改进SURF特征的维吾尔文复杂文档图像匹配检索[J].智能系统学报,2019,14(02):296.[doi:10.11992/tis.201709014]
 ALIYA Batur,NURBIYA Yadikar,HORNISA Mamat,et al.Complex Uyghur document image matching and retrieval based on modified SURF feature[J].CAAI Transactions on Intelligent Systems,2019,14(02):296.[doi:10.11992/tis.201709014]

备注/Memo

备注/Memo:
收稿日期:2014-11-24;改回日期:。
基金项目:国家自然科学基金重大研究计划资助项目(90920013).
作者简介:陈阳,女,1984年生,博士,博士后,主要研究方向为模式识别、云计算、大数据等;董肖莉,女,1985年生,助理研究员,主要研究方向为图像处理、模式识别及智能信息处理;李卫军,男,1975年生,博士,研究员,主要研究方向为仿生图像处理技术、仿生模式识别理论与方法、近红外光谱定性分析技术、高维信息计算。目前,已在国内外刊物、重要会议上发表学术论文30余篇。
通讯作者:董肖莉.E-mail:dongxiaoli@semi.ac.cn.
更新日期/Last Update: 2015-06-15