[1]许可乐,唐涛,蒋咏梅.一种SAR图像稳健特征点提取方法[J].智能系统学报,2013,8(04):287-298.[doi:10.3969/j.issn.1673-4785.201304038]
 XU Kele,TANG Tao,JIANG Yongmei.A stable feature point extraction approach for SAR image registration[J].CAAI Transactions on Intelligent Systems,2013,8(04):287-298.[doi:10.3969/j.issn.1673-4785.201304038]
点击复制

一种SAR图像稳健特征点提取方法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第8卷
期数:
2013年04期
页码:
287-298
栏目:
出版日期:
2013-08-25

文章信息/Info

Title:
A stable feature point extraction approach for SAR image registration
文章编号:
1673-4785(2013)04-0287-05
作者:
许可乐唐涛蒋咏梅
国防科技大学 电子科学与工程学院,湖南 长沙 410073
Author(s):
XU Kele TANG Tao JIANG Yongmei
School of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China
关键词:
SAR图像配准特征提取SIFTGabor滤波器
Keywords:
SAR image registration feature extraction SIFT Gabor filter
分类号:
TP751.1
DOI:
10.3969/j.issn.1673-4785.201304038
文献标志码:
A
摘要:
针对合成孔径雷达(SAR)图像自动配准问题,提出了一种新的SAR图像特征点提取方法.先对SAR图像灰度值进行对数变换处理,将乘性噪声转化为加性噪声,然后利用Gabor滤波器取代高斯滤波器建立尺度空间,使SAR图像在低尺度仍较好地保留细节,增加了提取特征点数目,并设置了对比度双门限,有效地抑制了伪特征点,从而提高SAR图像配准的精度和速度.实验结果表明,SAR图像稳健特征点提取方法是有效的.
Abstract:
For the automatic registration of a synthetic aperture radar(SAR) image, we propose a feature point extraction approach. First, by examining the logarithmic transform for the grey level of the SAR image, it was discovered that the multiplicative noise can be transformed into the additional noise. Then the scale space of the image was constructed by substituting multiscale Gabor filter for Gaussian filter, which reveals the SAR image still has details better in a low scale, and increases the number of extracted feature points. Further, the double thresholds for contrast ratio are set up to discard the false feature point effectively, thereby increasing the precision and speed of SAR image registration. The results of the experiments demonstrate the applicability of approach to find feature points for stable SAR image registration.

参考文献/References:

[1]LOWE D G. Distinctive image features from scaleinvariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[2]XIONG B, CHEN J M, KUANG G, et al. Estimation of the repeat-pass ALOS PALSAR interferometric baseline through direct least square ellipse fitting[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(9): 1-8.
[3]SURI S, REINARTZ P. Mutualinformation-based registration of TerraSAR-X and Ikonos imagery in urban areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2): 939-949.
[4]KE Y, SUKTHANKAR R. PCA-SIFT: a more distinctive representation for local image descriptors[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington DC, USA, 2004: 1980-1987.
[5]LI Q L, WANG G Y, LIU J G, et al. Robust scale-invariant feature matching for remote sensing image registration[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(2): 287-291.
[6]PALENICHKA R M, ZAREMBA M B. Automatic extraction of control points for the registration of optical satellite and LiDAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(7): 2864-2879.
[7]LU G, YAN Y, KOU Y, et al. Image registration based on criteria of feature point pair mutual information[J]. IET Image Process, 2011, 5(6): 560-566.
[8]SCHWIND P, SURI S, REINARTZ P, et al. Applicability of the SIFT operator for geometrical SAR image registration[J]. International Journal of Remote Sensing, 2010, 31(8): 1959-1980.
[9]WANG Shanhu, YOU Hongjian, FU Kun. BFSIFT: a novel method to find feature matches for SAR image registration[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4): 649-653.
[10]雷琳, 王壮, 粟毅. 基于多尺度Gabor滤波器组的不变特征点提取新方法[J]. 电子学报, 2009, 37(10): 2314-2319. 
LEI Lin, WANG Zhuang, SU Yi. A new invariant feature detector based on multiscale Gabor filter bank[J]. Acta Electronica Sinica, 2009, 37(10): 2314-2319.
[11]LIU Li, FIEGUTH P. Texture classification from random features[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 10(5): 1109-1120.
[12]DUAN C, MENG X, TU C,et a1. How to make local image features more eficient and distinctive[J]. IET Computer Vision, 2008, 2(3): 98-102.

相似文献/References:

[1]胡光龙,秦世引.动态成像条件下基于SURF和Mean shift的运动目标高精度检测[J].智能系统学报,2012,7(01):61.
 HU Guanglong,QIN Shiyin.High precision detection of a mobile object under dynamic imaging based on SURF and Mean shift[J].CAAI Transactions on Intelligent Systems,2012,7(04):61.

备注/Memo

备注/Memo:
收稿日期:2013-04-15. 网络出版日期:2013-06-03. 
通信作者:许可乐. E-mail:xukelele@163.com.
作者简介:
许可乐,男,1990年生,硕士研究生,主要研究方向为图像处理 .
更新日期/Last Update: 2013-09-23