[1]路子祥,屠黎阳,祖辰,等.基于脑连接网络的阿尔茨海默病临床变量值预测[J].智能系统学报,2017,12(3):355-361.[doi:10.11992/tis.201607020]
 LU Zixiang,TU Liyang,ZU Chen,et al.Prediction of clinical variables in Alzheimer’s disease using brain connective networks[J].CAAI Transactions on Intelligent Systems,2017,12(3):355-361.[doi:10.11992/tis.201607020]
点击复制

基于脑连接网络的阿尔茨海默病临床变量值预测

参考文献/References:
[1] BROOKMEYER R, JOHNSON E, ZIEGLER-GRAHAM K, et al. Forecasting the global burden of Alzheimer’s disease[J]. Alzheimers and dementia, 2007, 3(3): 186-91.
[2] FAN Yong, RAO Hengyi, HURT H, et al. Multivariate examination of brain abnormality using both structural and functional MRI[J]. NeuroImage, 2007, 36(4): 1189-1199.
[3] PETERSEN R C, DOODY R, KURZ A, et al. Current concepts in mild cognitive impairment[J]. Archives of neurology, 2001, 58(12): 1985-1992.
[4] PETERSEN R C, SMITH G E, WARING S C, et al. Mild cognitive impairment: clinical characterization and outcome[J]. Archives of neurology, 1999, 56(3): 303-308.
[5] CHENG Bo, ZHANG Daoqiang, CHEN Songcan, et al. Semi-supervised multimodal relevance vector regression improves cognitive performance estimation from imaging and biological biomarkers[J]. Neuroinformatics, 2013, 11(3): 339-353.
[6] ZHANG Daoqiang, SHEN Dinggang, Alzheimer’s Disease Neuroimaging Initiative. Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in alzheimer’s disease[J]. NeuroImage, 2012, 59(2): 895-907.
[7] ZHU Xiaofeng, SUK H I, SHEN Dinggang. A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis[J]. NeuroImage, 2014, 100: 91-105.
[8] Wee C Y, Yap P T, Li Wenbin, et al. Enriched white matter connectivity networks for accurate identification of MCI patients[J]. NeuroImage, 2011, 54(3): 1812-1822.
[9] CHEN Gang, WARD B D, XIE Chunming, et al. Classification of Alzheimer disease, mild cognitive impairment, and normal cognitive status with large-scale network analysis based on resting-state functional MR imaging[J]. Radiology, 2011, 259(1): 213-221.
[10] WANG Jinhui, ZUO Xinian, DAI Zhengrui, et al. Disrupted functional brain connectome in individuals at risk for Alzheimer’s disease[J]. Biological psychiatry, 2013, 73(5): 472-481.
[11] JIE Biao, ZHANG Daoqiang, WEE C Y, et al. Topological graph kernel on multiple thresholded functional connectivity networks for mild cognitive impairment classification[J]. Human brain mapping, 2014, 35(7): 2876-2897.
[12] WEE C Y, YAP P T, ZHANG Daoqiang, et al. Identification of MCI individuals using structural and functional connectivity networks[J]. NeuroImage, 2012, 59(3): 2045-2056.
[13] YAN Chaogan, FENG Yufeng. DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI[J]. Frontiers in systems neuroscience, 2010, 4: 13.
[14] ZANIN M, SOUSA P, PAPO D, et al. Optimizing functional network representation of multivariate time series[J]. Scientific reports, 2012, 2: 630.
[15] TIBSHIRANI R. Regression shrinkage and selection via the lasso[J]. Journal of the royal statistical society, 1996, 58(1): 267-288.
[16] NG A Y. Feature selection, L1, vs. L2, regularization, and rotational invariance[C]//Proceedings of the twenty-first International Conference on Machine Learning. New York, NY: ACM, 2004.
[17] MEINSHAUSEN N, BüHLMANN P. Stability selection[J]. Journal of the royal statistical society, 2010, 72(4): 417-473.
[18] WOLF H, JELIC V, GERTZ H J, et al. A critical discussion of the role of neuroimaging in mild cognitive impairment[J]. Acta neurologica scandinavica supplementum, 2003, 107(S179): 52-76.
[19] POULIN S P, DAUTOFF R, MORRIS J C, et al. Amygdala atrophy is prominent in early Alzheimer’s disease and relates to symptom severity[J]. Psychiatry research: neuroimaging, 2011, 194(1): 7-13.
[20] SOLODKIN A, CHEN E E, VAN HOESEN G W, et al. In vivo parahippocampal white matter pathology as a biomarker of disease progression to Alzheimer’s disease[J]. Journal of comparative neurology, 2013, 521(18): 4300-4317.
[21] DERFLINGER S, SORG C, GASER C, et al. Grey-matter atrophy in Alzheimer’s disease is asymmetric but not lateralized[J]. Journal of Alzheimer’s disease: JAD, 2011, 25(2): 347-357.
[22] DAI Zhengjia, YAN Chaogan, LI Kuncheng, et al. Identifying and mapping connectivity patterns of brain network hubs in Alzheimer’s disease[J]. Cerebral cortex, 2015, 25(10): 3723-3742.
[23] HU Chenghui, JU Ronghui, SHEN Yusong, et al. Clinical decision support for Alzheimer’s disease based on deep learning and brain network[C]//Proceedings of 2016 IEEE International Conference on Communications. Kuala Lumpur: IEEE, 2016: 1-6.
相似文献/References:
[1]孙正兴,张尧烨,李? 彬.基于线性规划分类器的相关反馈技术[J].智能系统学报,2007,2(3):34.
 SUN Zheng-xing,ZHANG Yao-ye,LI Bin.Applying relevance feedback with a linear programming classifier[J].CAAI Transactions on Intelligent Systems,2007,2(3):34.
[2]张志飞,苗夺谦.基于粗糙集的文本分类特征选择算法[J].智能系统学报,2009,4(5):453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
 ZHANG Zhi-fei,MIAO Duo-qian.Feature selection for text categorization based on rough set[J].CAAI Transactions on Intelligent Systems,2009,4(3):453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
[3]顾成杰,张顺颐,杜安源.结合粗糙集和禁忌搜索的网络流量特征选择[J].智能系统学报,2011,6(3):254.
 GU Chengjie,ZHANG Shunyi,DU Anyuan.Feature selection of network traffic using a rough set and tabu search[J].CAAI Transactions on Intelligent Systems,2011,6(3):254.
[4]孙倩茹,王文敏,刘宏.视频序列的人体运动描述方法综述[J].智能系统学报,2013,8(3):189.
 SUN Qianru,WANG Wenmin,LIU Hong.Study of human action representation in video sequences[J].CAAI Transactions on Intelligent Systems,2013,8(3):189.
[5]曹晋,张莉,李凡长.一种基于支持向量数据描述的特征选择算法[J].智能系统学报,2015,10(2):215.[doi:10.3969/j.issn.1673-4785.201405063]
 CAO Jin,ZHANG Li,LI Fanzhang.A noval support vector data description-based feature selection method[J].CAAI Transactions on Intelligent Systems,2015,10(3):215.[doi:10.3969/j.issn.1673-4785.201405063]
[6]张佳骕,蒋亦樟,王士同.基于特征选择聚类方法的稀疏TSK模糊系统[J].智能系统学报,2015,10(4):583.[doi:10.3969/j.issn.1673-4785.201412001]
 ZHANG Jiasu,JIANG Yizhang,WANG Shitong.Sparse TSK fuzzy system based on feature selection clustering method[J].CAAI Transactions on Intelligent Systems,2015,10(3):583.[doi:10.3969/j.issn.1673-4785.201412001]
[7]陈玉明,吴克寿,李向军.基因表达数据在邻域关系中的特征选择[J].智能系统学报,2014,9(2):210.[doi:10.3969/j.issn.1673-4785.201307014]
 CHEN Yuming,WU Keshou,LI Xiangjun.Gene expression data feature selection with neighborhood relation[J].CAAI Transactions on Intelligent Systems,2014,9(3):210.[doi:10.3969/j.issn.1673-4785.201307014]
[8]郭雨萌,李国正.一种多标记数据的过滤式特征选择框架[J].智能系统学报,2014,9(3):292.[doi:10.3969/j.issn.1673-4785.201403064]
 GUO Yumeng,LI Guozheng.A filtering framework for the multi-label feature selection[J].CAAI Transactions on Intelligent Systems,2014,9(3):292.[doi:10.3969/j.issn.1673-4785.201403064]
[9]滕旭阳,董红斌,孙静.面向特征选择问题的协同演化方法[J].智能系统学报,2017,12(1):24.[doi:10.11992/tis.201611029]
 TENG Xuyang,DONG Hongbin,SUN Jing.Co-evolutionary algorithm for feature selection[J].CAAI Transactions on Intelligent Systems,2017,12(3):24.[doi:10.11992/tis.201611029]
[10]翟俊海,刘博,张素芳.基于粗糙集相对分类信息熵和粒子群优化的特征选择方法[J].智能系统学报,2017,12(3):397.[doi:10.11992/tis.201705004]
 ZHAI Junhai,LIU Bo,ZHANG Sufang.A feature selection approach based on rough set relative classification information entropy and particle swarm optimization[J].CAAI Transactions on Intelligent Systems,2017,12(3):397.[doi:10.11992/tis.201705004]

备注/Memo

收稿日期:2016-07-23。
基金项目:国家自然科学基金项目(61422204,61473149); 高等学校博士学科点专项科研基金课题(20123218110009); 南京航空航天大学基本科研业务费项目(NE2013105);
作者简介:路子祥,女,1992年生,硕士研究生,主要研究方向为数据挖掘、模式识别与图像处理;屠黎阳,男,1992年生,硕士研究生,主要研究方向为数据挖掘、模式识别与医学图像处理;张道强,男,1978年生,教授,博士生导师,主要研究方向为机器学习、模式识别与医学图像分析。
通讯作者:张道强.E-mail:dqzhang@nuaa.edu.cn.

更新日期/Last Update: 2017-06-25
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134