[1]王斐,张育中,宁廷会,等.脑-机接口研究进展[J].智能系统学报,2011,6(03):189-199.
 WANG Fei,ZHANG Yuzhong,NING Tinghui,et al.Research progress in a braincomputer interface[J].CAAI Transactions on Intelligent Systems,2011,6(03):189-199.
点击复制

脑-机接口研究进展(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第6卷
期数:
2011年03期
页码:
189-199
栏目:
出版日期:
2011-06-25

文章信息/Info

Title:
Research progress in a braincomputer interface
文章编号:
1673-4785(2011)03-0189-11
作者:
王斐12张育中1宁廷会1闻时光1
1. 东北大学 流程工业综合自动化国家重点实验室,辽宁 沈阳 110819;
 2. 哈尔滨工业大学 机器人技术与系统国家重点实验室,黑龙江 哈尔滨 150001
Author(s):
WANG Fei12 ZHANG Yuzhong1 NING Tinghui1 WEN Shiguang1
1. State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China;
2. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
关键词:
脑-机接口脑电信号预处理特征提取变换算法
Keywords:
braincomputer interface brain signal preprocessing feature extraction transformation algorithm
分类号:
TP391.4
文献标志码:
A
摘要:
作为当前神经工程领域中最活跃的研究方向之一,脑-机接口在生物医学、神经康复和智能机器人等领域具有重要的研究意义和巨大的应用潜力.近10年来,脑-机接口技术得到了长足的进步和飞速的发展,应用领域也在逐渐扩大.在已有相关工作的基础上,介绍脑-机接口系统的主要组成部分,对各组成部分常涉及到的相关基本理论和技术作了总结和介绍,主要包括脑信号获取、脑信号预处理、特征提取、变换算法等相关技术和理论,最后对脑-机接口未来的研究方向进行了展望.
Abstract:
As one of the most active research fields in neural engineering, braincomputer interface (BCI) has important research significance and great potential applications in many fields including biomedicine, neurological rehabilitation, and intelligent robotics. In the last decade, BCI has made great progress and rapid development, and its application field is also gradually expanding. In this study, based on related work, the main components consisting of the BCI system were detailed, then related basic theories and techniques involved in these components were summarized and described including brain signal acquisition, signal preprocessing, feature extraction, and transformation algorithms. Finally, an overview of the trend of future BCI development was discussed. 

参考文献/References:

[1]WOLPAW J R, BIRBAUMER N, MCFARLAND D J, et al. Braincomputer interfaces for communication and control[J]. Clinical Neurophysiology, 2002, 113(6): 767791.
[2]SUTTER E E. The brain response interface: communication through visually guided electrical brain responses[J]. Journal of Microcomputer Applications, 1992, 15(1): 3145.
[3]WOLPAW J R, MCFARLAND D J, VAUGHAN T M. Braincomputer interface research at the Wadsworth Center[J]. IEEE Transactions on Rehabilitation Engineering, 2000, 8(2): 222226.
[4]WOLPAW J R, MCFARLAND D J. Control of a twodimensional movement signal by a noninvasive braincomputer interface in humans[J]. Proceedings of the National Academy of Sciences, 2004, 101(51): 1784917854.
[5]LAUER R T, PECKHAM P H, KILGORE K L, et al. Applications of cortical signals to neuroprosthetic control: a critical review[J]. IEEE Transactions on Rehabilitation Engineering, 2000, 8(2): 205208.
[6]HOCHBERG L R, SERRUYA M D, FRIEHS G M, et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia[J]. Nature, 2006, 442(13): 164171.
[7]WOLPAW J R, BIRBAUMER N, HEETDERKS W J, et al. Braincomputer interface technology: a review of the first international meeting[J]. IEEE Transactions on Rehabilitation Engineering, 2000, 8(2): 164173.
[8]VAUGHAN T M, HEETDERKS W J, TREJO L J, et al. Braincomputer interface technology: a review of the second international meeting[J]. IEEE Transactions on Neural System and Rehabilitation Engineering, 2003, 11(2): 94109.
[9]MALMIVUO J, PLONSEY R. Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields[M]. New York, USA: Oxford University Press, 1995: 329338.
[10]BABILONI F, CINCOTTI F, BIANCHI L, et al. Recognition of imagined hand movements with low resolution surface Laplacian and linear classifiers[J]. Medical Engineering & Physics, 2001, 23(5): 323328.
[11]BABILONI F, CINCOTTI F, LAZZARINI L, et al. Linear classification of lowresolution EEG patterns produced by imagined hand movements[J]. IEEE Transactions on Rehabilitation Engineering, 2000, 8(2): 186188.
[12]CINCOTTI F, BIANCHI L, DEL R MILLAN J, et al. Brain computer interface: the use of low resolution surface Laplacian and linear classifiers for the recognition of imagined hand movements[C]//Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Istanbul, Turkey, 2001: 655658.
[13]CINCOTTI F, MATTIA D, BABILONI C, et al. The use of EEG modifications due to motor imagery for braincomputer interfaces[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2003, 11(2): 131133.
[14]DORNHEGE G, BLANKERTZ B, CURIO G, et al. Boosting bit rates in noninvasive EEG singletrial classifications by feature combination and multiclass paradigms[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 9931002.
[15]FABIANI G E, MCFARLAND D J, WOLPAW J R, et al. Conversion of EEG activity into cursor movement by a braincomputer interface (BCI)[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2004, 12(3): 331338.
[16]GYSELS E, CELKA P. Phase synchronization for the recognition of mental tasks in a braincomputer interface[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2004, 12(4): 406415.
[17]MCFARLAND D J, MCCANE L M, WOLPAW J R. EEGbased communication and control: shortterm role of feedback[J]. IEEE Transactions on Rehabilitation Engineering, 1998, 6(1): 711.
[18]MCFARLAND D J, MCCANE L M, DAVID S V, et al. Spatial filter selection for EEGbased communication[J]. Electroencephalography & Clinical Neurophysiology, 1997, 103(3): 386394.
 [19]MCFARLAND D J, SARNACKI W A, VAUGHAN T M, et al. Braincomputer interface (BCI) operation: signal and noise during early training sessions[J]. Clinical Neurophysiology, 2005, 116(1): 5662.
[20]MCFARLAND D J, SARNACKI W A, WOLPAW J R. Braincomputer interface (BCI) operation: optimizing information transfer rates[J]. Biological Psychology, 2003, 63(3): 237251.
[21]MARCIANI M G, BABILONI F, TOPANI F, et al. Adaptive brain interfaces for physicallydisabled people[C]//Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Hong Kong, China, 1998: 20082011.
[22]DEL R MILLAN J, MOURINO J, BABILONI F, et al. Local neural classifier for EEGbased recognition of mental tasks[C]//Proceedings of the IEEEINNSENNS International Joint Conference on Neural Networks. Como, Italy, 2000: 632636.
[23]DEL R MILLAN J, MOURINO J, FRANZM, et al. A local neural classifier for the recognition of EEG patterns associated to mental tasks[J]. IEEE Transactions on Neural Networks, 2002, 13(3): 678686.
[24]DEL R MILLAN J, RENKENS F, MOURINO J, et al. Noninvasive brainactuated control of a mobile robot by human EEG[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 10261033.
[25]DEL R MILLAN J, MOURINO J. Asynchronous BCI and local neural classifiers: an overview of the adaptive brain interface project[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2003, 11(2): 159161.
[26]PETERS B O, PFURTSCHELLER G, FLYVBJERG H. Automatic differentiation of multichannel EEG signals[J]. IEEE Transactions on Biomedical Engineering, 2001, 48(1): 111116.
[27]QIN L, DENG J, DING L, et al. Motor imagery classification by means of source analysis methods[C]//Proceedings of 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Francisco, USA, 2004: 43564358.
[28]RAMOSER H, MULLERGERKING J, PFURTSCHELLER G. Optimal spatial filtering of single trial EEG during imagined hand movement[J]. IEEE Transactions on Rehabilitation Engineering, 2000, 8(4): 441446.
[29]SCHALK G, WOLPAW J R, MCFARLAND D J, et al. EEGbased communication: presence of an error potential[J]. Clinical Neurophysiology, 2000, 111(12): 21382144.
[30]WANG T, DENG J, HE B. Classifying EEGbased motor imagery tasks by means of timefrequency synthesized spatial patterns[J]. Clinical Neurophysiology, 2004, 115(12): 27442753.
[31]WANG T, DENG J, HE B. Classification of motor imagery EEG patterns and their topographic representation[C]//Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Francisco, USA, 2004: 43594362.
[32]BAYLISS J D, BALLARD D H. A virtual reality testbed for braincomputer interface research[J]. IEEE Transactions on Rehabilitation Engineering, 2000, 8(2): 188190.
[33]ERFANIAN A, ERFANI A. ICAbased classification scheme for EEGbased braincomputer interface: the role of mental practice and concentration skills[C]//Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Francisco, USA, 2004: 235238.
[34]GAO X, XU N, HONG B, et al. Optimal selection of independent components for eventrelated brain electrical potential enhancement[C]//Proceedings of IEEE International Workshop on Biomedical Circuits and Systems. Singapore, 2004: S3/5/INVS3/5/14.
[35]WU R C, LIANG S F, LIN C T, et al. Applications of eventrelatedpotentialbased brain computer interface to intelligent transportation systems[C]//Proceedings of the 2004 IEEE International Conference on Networking, Sensing and Control. Taipei, China, 2004: 813818.
 [36]SERBY H, YOMTOV E, INBAR G F. An improved P300based braincomputer interface[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2005, 13(1): 8998.
[37]XU Neng, GAO Xiaorong, HONG Bo, et al. BCI competition 2003—data set IIb: enhancing P300 wave detection using ICAbased subspace projections for BCI applications[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 10671072.
[38]WANG Yijun, ZHANG Zhiguang, GAO Xiaorong, et al. Lead selection for SSVEPbased braincomputer interface[C]//Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Francisco, USA, 2004: 45074510.
[39]LI Yuanqing, CICHOCKI A, GUAN Cuntai, et al. Sparse factorization preprocessingbased offline analysis for a cursor control experiment[C]//Proceedings of 2004 IEEE International Workshop on Biomedical Circuits and Systems. Singapore, 2004: S3/5/INVS3/5/58.
 [40]BLANCHARD G, BLANKERTZ B. BCI competition 2003—data set IIa: spatial patterns of selfcontrolled brain rhythm modulations[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 10621066.
[41]DORNHEGE G, BLANKERTZ B, CURIO G. Speeding up classification of multichannel braincomputer interfaces: common spatial patterns for slow cortical potentials[C]//Proceedings of the First International IEEE EMBS Conference on Neural Engineering. Arlington, USA, 2003: 595598.
[42]DORNHEGE G, BLANKERTZ B, CURIO G, et al. The Berlin braincomputer interface: machine learning based detection of user specific brain states[J]. Journal of Universal Computer Science, 2006, 12(6): 581607.
[43]GUGER C, RAMOSER H, PFURTSCHELLER G. Realtime EEG analysis with subjectspecific spatial patterns for a braincomputer interface(BCI)[J]. IEEE Transactions on Rehabilitation Engineering, 2000, 8(4): 447456.
[44]KRAULEDAT M, DORNHEGE G, BLANKERTZ B, et al. Improving speed and accuracy of braincomputer interfaces using readiness potential features[C]//Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Francisco, USA, 2004: 45114515.
[45]PFURTSCHELLER G, NEUPER C, GUGER C, et al. Current trends in Graz braincomputer interface (BCI) research[J]. IEEE Transactions on Rehabilitation Engineering, 2000, 8(2): 216219.
[46]PFURTSCHELLER G, NEUPER C. Motor imagery and direct braincomputer communication[J]. Proceedings of the IEEE, 2001, 89(7): 11231134.
[47]XU W J, GUAN C T, SIONG C E, et al. High accuracy classification of EEG signal[C]//Proceedings of the 17th International Conference on Pattern Recognition. Cambridge, USA, 2004: 391394.
[48]CHENG Ming, JIA Wenyan, GAO Xiaorong, et al. Mu rhythmbased cursor control: an offline analysis[J]. Clinical Neurophysiology, 2004, 115(4): 745751.
[49]LIAO Xiang, YAO Dezhong, WU Dan, et al. Combining spatial filters for the classification of singletrial EEG in a finger movement task[J]. IEEE Transactions on Biomedical Engineering, 2007, 54(5): 821831.
[50]TREJO L J, WHEELER K R, JORGENSEN C C, et al. Multimodal neuroelectric interface development[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2003, 11(2): 199203.
[51]LEMM S, BLANKERTZ B, CURIO G, et al. Spatiospectral filters for improving the classification of single trial EEG[J]. IEEE Transactions on Biomedical Engineering, 2005, 52(9): 15411548.
[52]LIU Hesheng, GAO Xiaorong, YANG Fusheng, et al. Imagined hand movement identification based on spatiotemporal pattern recognition of EEG[C]//Proceedings of the First International IEEE EMBS Conference on Neural Engineering. Capri Island, Italy, 2003: 599602.
[53]BIRBAUMER N, HINTERBERGER T, KUBLER A, et al. The thoughttranslation device (TTD): neurobehavioral mechanisms and clinical outcome[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2003, 11(2): 120123.
[54]HINTERBERGER T, WILHELM B, MELLINGER J, et al. A device for the detection of cognitive brain functions in completely paralyzed or unresponsive patients[J]. IEEE Transactions on Biomedical Engineering, 2005, 52(2): 211220.
[55]HINTERBERGER T, WEISKOPF N, VEIT R, et al. An EEGdriven braincomputer interface combined with functional magnetic resonance imaging (fMRI)[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 971974.
[56]BASHASHATI A, WARD R K, BIRCH G E. A new design of the asynchronous brain computer interface using the knowledge of the path of features[C]//Proceedings of the 2nd International IEEE EMBS Conference on Neural Engineering. Arlington, USA, 2005: 101104.
[57]BIRCH G E, MASON S G, BORISOFF J F. Current trends in braincomputer interface research at the Neil Squire foundation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2003, 11(2): 123126.
[58]FATOURECHI M, BASHASHATI A, BORISOFF J F, et al. Improving the performance of the LFASD brain computer interface by means of genetic algorithm[C]//Proceedings of the Fourth IEEE International Symposium on Signal Processing and Information Technology. Roma, Italy, 2004: 3841.
[59]FATOURECHI M, BASHASHATI A, WARD R K, et al. A hybrid genetic algorithm approach for improving the performance of the LFASD brain computer interface[C]//Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. Philadelphia, USA, 2005: 345348.
[60]GDMUNDUR S, JOHANNES R S, JON A B. Waveletpackage transformation as a preprocessor of EEG waveforms for classification[C]//Proceedings of the 19th International Conference IEEE/EMBS. Chicago, USA, 1997: 13051308.
[61]TERESA L D, GLENN T L. Waveletbased feature extraction for EEG classification[C]//Proceedings of the 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Amsterdam, The Netherlands, 1996: 10031004.
[62]FLOTZINGER D, PREGENZER M, PFURTSCHELLER G. Feature selection with distinction sensitive learning vector quantisation and genetic algorithms[C]//IEEE International Conference on Neural Networks. Orlando, USA, 1994: 34483451.
[63]PREGENZER M, PFURTSCHELLER G. Frequency component selection for an EEGbased brain to computer interface[J]. IEEE Transactions on Rehabilitation Engineering, 1999, 7(4): 413419.
[64]GLASSMAN E L. A waveletlike filter based on neuron action potentials for analysis of human scalp electroencephalographs[J]. IEEE Transactions on Biomedical Engineering, 2005, 52(11): 18511862.
 [65]GRAIMANN B, HUGGINS J E, SCHLOGL A, et al. Detection of movementrelated patterns in ongoing singlechannel electrocorticogram[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2004, 51(6): 954962.
[66]DER R MILLAN J, MARCO F, MOURINO J, et al. Relevant EEG features for the classification of spontaneous motorrelated tasks[J]. Biological Cybernetics, 2002, 86(2): 8995.
[67]BOSTANOV V. BCI competition 2003—data sets Ib and IIb: feature extraction from eventrelated brain potentials with the continuous wavelet transform and the tvalue scalogram[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 10571061.
[68]GARRETT D, PETERSON D A, ANDERSON C W, et al. Comparison of linear, nonlinear, and feature selection methods for EEG signal classification[J]. IEEE Transactions on Neural System and Rehabilitation Engineering, 2003, 11(2): 141144.
[69]RAKOTOMAMONJY A, GUIGUE V, MALLET G, et al. Ensemble of SVMs for improving brain computer interface P300 speller performances[J]. Lecture Notes in Computer Science, 2005, 3696: 4550.
[70]KAPER M, MEINICKE P, GROSSEKATHOEFER U, et al. BCI competition 2003—data set IIb: support vector machines for the p300 speller paradigm[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 10731076.
[71]ANDERSON C W, SIJERCIC Z. Classification of EEG signals from four subjects during five mental tasks[C]//Proceedings of the International Conference on Engineering Applications of Neural Networks. London, UK, 1996: 407414.
[72]PALANIAPPAN R. Brain computer interface design using band powers extracted during mental tasks[C]//Proceedings of the 2nd International IEEE/EMBS Conference on Neural Engineering. Arlington, USA, 2005: 321324.
[73]KEIRN Z A, AUNON J I. A new mode of communication between man and his surroundings[J]. IEEE Transactions on Biomedical Engineering, 1990, 37(12): 12091214.
 [74]SOLHJOO S, NASRABADI A M, GOLPAYEGANI M R H. Classification of chaotic signals using HMM classifiers: EEGbased mental task classification[C]//Proceedings of the 13th European Signal Processing Conference. Antalya, Turkey, 2005: 14.

相似文献/References:

[1]张毅,罗明伟,罗元.脑电信号的小波变换和样本熵特征提取方法[J].智能系统学报,2012,7(04):339.
 ZHANG Yi,LUO Mingwei,LUO Yuan.EEG feature extraction method based on wavelet transform and sample entropy[J].CAAI Transactions on Intelligent Systems,2012,7(03):339.
[2]杨建平,刘明华,吕敬祥,等.低觉醒脑电识别与唤醒的可穿戴系统研究[J].智能系统学报,2019,14(04):787.[doi:10.11992/tis.201806047]
 YANG Jianping,LIU Minghua,LYU Jingxiang,et al.A wearable system to recognize and awaken low-arousal state[J].CAAI Transactions on Intelligent Systems,2019,14(03):787.[doi:10.11992/tis.201806047]

备注/Memo

备注/Memo:
收稿日期: 2010-08-03.
基金项目:国家自然科学基金资助项目(60705031);教育部博士学科点科研基金资助项目(20070145105);机器人技术与系统国家重点实验室开放课题基金资助项目(SKLRS2010ZD03);中央高校基本科研业务费专项资金资助项目(N090404007).
通信作者:王斐.E-mail:wangfei@ise.neu.edu.cn.
作者简介:
王斐,男,1974年生,副教授,中国自动化学会机器人专业委员会委员,主要研究方向为人机交互、智能机器人,主持和参与国家级、省部级基金项目10余项,发表学术论文40余篇.
张育中,男,1987年生,博士研究生,主要研究方向为脑-机接口、模式识别等.
宁廷会,女,1987年生,硕士研究生,主要研究方向为时频信息处理、模式识别等.
更新日期/Last Update: 2011-07-23