[1]孙倩茹,王文敏,刘宏.视频序列的人体运动描述方法综述[J].智能系统学报,2013,8(03):189-188.
 SUN Qianru,WANG Wenmin,LIU Hong.Study of human action representation in video sequences[J].CAAI Transactions on Intelligent Systems,2013,8(03):189-188.
点击复制

视频序列的人体运动描述方法综述(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第8卷
期数:
2013年03期
页码:
189-188
栏目:
出版日期:
2013-06-25

文章信息/Info

Title:
Study of human action representation in video sequences
文章编号:
1673-4785(2013)03-0189-10
作者:
孙倩茹12王文敏1刘宏12
1.北京大学深圳研究生院 深圳物联网智能感知技术工程实验室,广东 深圳 518055;
2.北京大学 机器感知与智能教育部重点实验室,北京 100871
Author(s):
SUN Qianru12 WANG Wenmin1 LIU Hong12
1. Engineering Lab on Intelligent Perception for Internet of Things(ELIP), Shenzhen Graduate School of Peking University, Shenzhen 518055, China;
2. Key Laboratory for Machine Perception (Ministry of Education), Peking University, Beijing 100871, China
关键词:
视频序列人体运动描述特征提取特征选择特征融合
Keywords:
video sequences human action representation feature extraction feature selection feature fusion
分类号:
TP391
文献标志码:
A

参考文献/References:

[1]王亮,胡卫明,谭铁牛.人运动的视觉分析综述[J].计算机学报, 2002, 25(3): 225-237.
WANG Liang, HU Weiming, TAN Tieniu. A survey of visual analysis of human motion[J]. Chinese Journal of Computers, 2002, 25(3): 225-237.
[2]BOBICK A F, DAVIS J W. The recognition of human movement using temporal templates[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(3): 257-267.
[3]傅晓英.基于半连接HMM模型的人体行为识别研究与实现[D].北京:北京交通大学, 2009:19.
FU Xiaoying. Study and implementation of human action recognition based on semi-connected HMM[D]. Beijing: Beijing Jiaotong University, 2009: 19.
[4]BLANK M, GORELICK L, SHECHTMAN E, et al. Actions as space-time shapes[C]//International Conference on Computer Vision. Beijing, China, 2005: 1395-1402.
[5]YILMAZ A, SHAH M. Actions sketch: a novel action representation[C]//IEEE Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005: 984-989.
[6]WANG L, SUTER D. Learning and matching of dynamic shape manifolds for human action recognition[J]. IEEE Transactions on Image Processing, 2007, 16(6): 1646-1661.
[7]HE Xiaofei, NIYOGI P. Locality preserving projections[M]//THRUN S, SAUL L K, SCHOLKOPF B. Advances in Neural Information Processing Systems. Cambridge, USA: The MIT Press, 2003.
[8]冯波.基于光流计算的典型行为识别算法研究[D].西安:西北工业大学, 2006: 25-26. 
[9]EFROS A A, BERG A C, BERG E C, et al. Recognizing action at a distance[C]//International Conference on Computer Vision. Nice, France, 2003: 726-733.
[10]FATHI A, MORI G. Action recognition by learning mid-level motion features[C]//IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA, 2008: 1-8.
[11]DANAFAR S, GHEISSARI N. Action recognition for surveillance applications using optic flow and SVM[C]//Asian Conference on Computer Vision. Tokyo, Japan, 2007: 457-466.
[12]RAO C, SHAH M. View-invariance in action recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition. Kauai, USA, 2001: 316-322.
[13]SHEIKH Y, SHEIKH M, SHAH M. Exploring the space of a human action[C]//International Conference on Computer Vision. Beijing, China, 2005: 144-149.
[14]JOHN V, TRUCCO E, MCKENNA J. Markerless human motion capture using charting and manifold constrained particle swarm optimisation[C]//British Machine Vision Conference (Workshops). Aberystwyth, UK, 2010: 1-11.
[15]ALI S, BASHARAT A, SHAH M. Chaotic invariants for human action recognition[C]//International Conference on Computer Vision. Rio de Janeiro, Brazil, 2007: 1-8.
[16]WANG H, KLASER A, SCHMID C, et al. Action recognition by dense trajectories[C]//IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, USA, 2011: 3169-3176.
[17]RAPTIS M, KOKKINOS I, SOATTO S. Discovering discriminative action parts from mid-level video representations[C]//IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA, 2012: 1242-1249.
[18]HARRIS C, STEPHENS M. A combined corner and edge detector[C]//Proceedings of the Fourth Alvey Vision Conference. Manchester, UK, 1988: 147-151.
[19]LAPTEV I, LINDEBERG T. Space-time interest points[C]//International Conference on Computer Vision. Nice, France, 2003: 432-439.
[20]DOLLAR P, RABAUD V, COTTRELL G, et al. Behavior recognition via sparse spatiotemporal features[C]//IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance. Beijing, China, 2005: 65-72.
[21]OIKONOMOPOULOS A, PATRAS I, PANTIC M. Spatiotemporal salient points for visual recognition of human actions[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2006, 36(3): 710-719.
[22]WONG S, CIPOLLA R. Extracting spatiotemporal interest points using global information[C]//International Conference on Computer Vision. Rio de Janeiro, Brazil, 2007: 1-8.
[23]SCHULDT C, LAPTEV I, CAPUTO B. Recognizing human actions: a local SVM approach[C]//International Conference on Pattern Recognition. Cambridge, UK, 2004: 32-36.
[24]SCOVANNER P, ALI S, SHAH M. A 3-dimensional SIFT descriptor and its application to action recognition[C]//Proceedings of the 15th International Conference on Multimedia. Augsburg, Germany, 2007: 357-360.
[25]LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[26]GILBERT A, ILLINGWORTH J, BOWDEN R. Fast realistic multi-action recognition using mined dense spatio-temporal features[C]//International Conference on Computer Vision. Kyoto, Japan, 2009: 925-931.
[27]NIEBLES J, WANG H, FEI-FEI L. Unsupervised learning of human action categories using spatial-temporal words[J]. International Journal of Computer Vision, 2008, 79(3): 299-318.
[28]SUN Qianru, LIU Hong. Action disambiguation analysis using normalized Google-like distance correlogram[C]//11th Asian Conference on Computer Vision. Daejeon, Korea, 2012: 425-437.
[29]COVER T M. The best two independent measurements are not the two best[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1974, 4(1): 116-117.
[30]JAIN A K, DUIN R P W, MAO J. Statistical pattern recognition: a review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(1): 4-37.
[31]GUYON I, ELISSEEF F. An introduction to variable and feature selection[J]. Journal of Machine Learning Research, 2003, 3: 1157-1182.
[32]KIRA K, RENDELL L A. The feature selection problem: traditional methods and a new algorithm[C]//Proceedings of the Tenth National Conference on Artificial Intelligence. San Jose, USA, 1992: 129-134.
[33]ZAFFALON M, HUTTER M. Robust feature selection by mutual information distributions[C]//International Conference on Uncertainty in Artificial Intelligence. Edmonton, Canada, 2002: 577-584.
[34]PENG H, LONG F, DING C. Feature selection based on mutual information: criteria of maxdependency, max-relevance, and min-redundancy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1226-1238.
[35]LIU J, LUO J, SHAH M. Recognizing realistic actions from videos “in the wild”[C]//IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA, 2009: 1996-2003.
[36]LIN Z, JIANG Z, DAVID L S. Recognizing actions by shape-motion prototype trees[C]//International Conference on Computer Vision. Kyoto, Japan, 2009: 444-451.
[37]SCHINDLER G, ZITNICK L, BROWN M. Internet video category recognition[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Anchorage, USA, 2008: 1-7.
[38]SUN X, CHEN M, HAUPTMANN A. Action recognition via local descriptors and holistic features[C]//IEEE Conference on Computer Vision and Pattern Recognition. Kyoto, Japan, 2009: 58-65.
[39]WANG H, ULLAH M M, KLASER A, et al. Evaluation of local spatiotemporal features for action recognition[C]//British Machine Vision Conference. London, UK, 2009: 124.1-124.11.
[40]IKIZLER N, CINBIS R G, DUYGULU P. Human action recognition with line and flow histograms[C]//International Conference on Pattern Recognition. Tampa, USA, 2008: 1-4.
[41]ZHANG Z, HU Y, CHAN S, et al. Motion context: a new representation for human action recognition[C]//European Conference on Computer Vision. Marseille, France, 2008: 817-829.
[42]KLASER A, MARSZALEK M, SCHMID C. A spatio-temporal descriptor based on 3D-gradients[C]//British Machine Vision Conference. Leeds, UK, 2008: 995-1004.
[43]LIU J, SHAH M. Learning human actions via information maximization[C]//IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA, 2008: 1-8.
[44]ZHAO Z P, ELGAMMAL A M. Information theoretic key frame selection for action recognition[C]//British Machine Vision Conference. Leeds, UK, 2008: 109.1-109.10.
[45]GILBERT A, ILLINGWORTH J, BOWDEN R. Scale invariant action recognition using compound features mined from dense spatio-temporal corners[C]//European Conference on Computer Vision. Marseille, France, 2008: 222-233.
[46]SAVARESE S, POZO A D, NIEBLES J, et al. Spatial-temporal correlations for unsupervised action classification[C]//IEEE Workshop on Motion and Video Computing. Copper Mountain, USA, 2008: 1-8.
[47]NOWOZIN S, BAKIR G H, TSUDA K. Discriminative subsequence mining for action classification[C]//International Conference on Computer Vision. Rio de Janeiro, Brazil, 2007: 1-8.
[48]GUHA T, WARD R K. Learning sparse representations for human action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(8): 1576-1588.
[49]CUI Peng, WANG Fei, SUN Lifeng, et al. A matrix-based approach to unsupervised human action categorization[J]. IEEE Transactions on Multimedia, 2012, 14(1): 102-110.
[50]SADANAND S, CORSO J J. Action bank: a high-level representation of activity in video[C]//IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA, 2012: 1234-1241.
[51]BALLAN L, BERTINI M, DEL BIMBO A, et al. Effective codebooks for human action representation and classification in unconstrained videos[J]. IEEE Transactions on Multimedia, 2012, 14(4): 1234-1245.
[52]楼晓燕.智能监控系统若干关键技术的研究和实现[D].杭州:浙江工业大学, 2005: 8.
LOU Xiaoyan. Research and implementation of some key technique on intelligent monitoring system[D]. Hangzhou: Zhejiang University of Technology, 2005: 8.

备注/Memo

备注/Memo:
收稿日期: 2012-12-31.
网络出版日期: 2013-05-15.
基金项目:国家自然科学基金资助项目(60875050,60675025);国家“863”计划资助项目(2006AA04Z247);深圳市科学和技术创新委员会资助项目(JC201005280682A, JCYJ20120614152234873, CXC201104210010A).
通信作者:孙倩茹.
E-mail:qianrusun@sz.pku.edu.cn.
作者简介:孙倩茹,女,1987年生,博士研究生,主要研究方向为计算机视觉、模式识别.
王文敏,男,教授,主要研究方向为Web技术、嵌入式软件系统、智能终端技术.主持省、市重大科技专项6项,作为主要研发人员参与国家科技支撑计划项目1项、省部产学研结合项目1项,提交发明专利申请1项(第一发明人),取得软件著作权1项(第一著作权人).获得国家(首批)青年自然科学基金、省部级科技奖3项、市级科技奖1项、部级鉴定1项.发表学术论文30余篇.
刘宏,男,1967年生,教授,博士生导师,中国人工智能学会副秘书长.主要研究方向为计算机视听觉、智能机器人.先后承担国家自然科学基金7项、国家“863”计划、“973”计划项目5项. 获国家航天科技进步奖、首批“国家中青年科技创新领军人才”称号. 发表学术论文130余篇,其中被SCI、EI检索90余篇.
更新日期/Last Update: 2013-08-29