[1]黄琴,钱文彬,王映龙,等.代价敏感数据的多标记特征选择算法[J].智能系统学报,2019,14(5):929-938.[doi:10.11992/tis.201807027]
 HUANG Qin,QIAN Wenbin,WANG Yinglong,et al.Multi-label feature selection algorithm for cost-sensitive data[J].CAAI Transactions on Intelligent Systems,2019,14(5):929-938.[doi:10.11992/tis.201807027]
点击复制

代价敏感数据的多标记特征选择算法

参考文献/References:
[1] ZHANG Minling, ZHOU Zhihua. A review on multi-label learning algorithms[J]. IEEE transactions on knowledge and data engineering, 2014, 26(8):1819-1837.
[2] TSOUMAKAS G, KATAKIS I, VLAHAVAS I. Random -Labelsets for multilabel classification[J]. IEEE transactions on knowledge and data engineering, 2011, 23(7):1079-1089.
[3] 郑伟, 王朝坤, 刘璋, 等. 一种基于随机游走模型的多标签分类算法[J]. 计算机学报, 2010, 33(8):1418-1426 ZHENG Wei, WANG Chaokun, LIU Zhang, et al. A multi-label classification algorithm based on random walk model[J]. Chinese journal of computers, 2010, 33(8):1418-1426
[4] 李宇峰, 黄圣君, 周志华. 一种基于正则化的半监督多标记学习方法[J]. 计算机研究与发展, 2012, 49(6):1272-1278 LI Yufeng, HUANG Shengjun, ZHOU Zhihua. Regularized semi-supervised multi-label learning[J]. Journal of computer research and development, 2012, 49(6):1272-1278
[5] PAWLAK Z. Rough sets[J]. International journal of computer and information sciences, 1982, 11(5):341-356.
[6] PAWLAK Z, SO-Winski R. Rough set approach to multi-attribute decision analysis[J]. European journal of operational research, 1994, 72(3):443-459.
[7] 刘清. Rough集及Rough推理[M]. 北京:科学出版社, 2001.
[8] SUN Liang, JI Shuiwang, YE Jieping. Multi-label dimensionality reduction[M]. Florida:CRC Press, 2013:20–22.
[9] ZHANG Yin, ZHOU Zhihua. Multi-label dimensionality reduction via dependence maximization[C]//Proceedings of the 23rd National Conference on Artificial Intelligence. Chicago, Illinois, 2008:1503?1505.
[10] YU Kai, YU Shipeng, TRESP V. Multi-label informed latent semantic indexing[C]//Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Salvador, Brazil, 2005:258?265.
[11] 段洁, 胡清华, 张灵均, 等. 基于邻域粗糙集的多标记分类特征选择算法[J]. 计算机研究与发展, 2015, 52(1):56-65 DUAN Jie, HU Qinghua, ZHANG Lingjun, et al. Feature selection for multi-label classification based on neighborhood rough sets[J]. Journal of computer research and development, 2015, 52(1):56-65
[12] 王晨曦, 林耀进, 唐莉, 等. 基于信息粒化的多标记特征选择算法[J]. 模式识别与人工智能, 2018, 31(2):123-131 WANG Chenxi, LIN Yaojin, TANG Li, et al. Multi-label feature selection based on information granulation[J]. Pattern recognition and artificial intelligence, 2018, 31(2):123-131
[13] LIN Yaojin, HU Qinghua, LIU Jinghua, et al. Multi-label feature selection based on neighborhood mutual information[J]. Applied soft computing, 2016, 38:244-256.
[14] 刘景华, 林梦雷, 王晨曦, 等. 基于局部子空间的多标记特征选择算法[J]. 模式识别与人工智能, 2016, 29(3):240-251 LIU Jinghua, LIN Menglei, WANG Chenxi, et al. Multi-label feature selection algorithm based on local subspace[J]. Pattern recognition and artificial intelligence, 2016, 29(3):240-251
[15] LEE J, LIM H, KIM D W. Approximating mutual information for multi-label feature selection[J]. Electronics letters, 2012, 48(15):929-930.
[16] 张振海, 李士宁, 李志刚, 等. 一类基于信息熵的多标签特征选择算法[J]. 计算机研究与发展, 2013, 50(6):1177-1184 ZHANG Zhenhai, LI Shining, LI Zhigang, et al. Multi-label feature selection algorithm based on information entropy[J]. Journal of computer research and development, 2013, 50(6):1177-1184
[17] YANG Qiang, WU Xindong. 10 challenging problems in data mining research[J]. International journal of information technology & decision making, 2006, 5(4):597-604.
[18] 徐章艳, 刘作鹏, 杨炳儒, 等. 一个复杂度为max(O(|C||U|),O(|C|2|U/C|))的快速属性约简算法[J]. 计算机学报, 2006, 29(3):391-399 XU Zhangyan, LIU Zuopeng, YANG Bingru, et al. A quick attribute reduction algorithm with complexity of max(O(|C||U|),O(|C|2|U/C|))[J]. Chinese journal of computers, 2006, 29(3):391-399
[19] WU Binglong, QIAN Wenbin, HUANG Qin, et al. Cost-Sensitive multi-label feature selection algorithm based on positive approximation[C]//Fuzzy Systems and Data Mining IV-Proceedings of FSDM 2018. Bangkok, Thailand, 2018:381?386.
[20] QIAN Yuhua, LIANG Jiye, PEDRYCZ W, et al. Positive approximation:an accelerator for attribute reduction in rough set theory[J]. Artificial intelligence, 2010, 174(9/10):597-618.
[21] WEI Wei, WU Xiaoying, LIANG Jiye, et al. Discernibility matrix based incremental attribute reduction for dynamic data[J]. Knowledge-based systems, 2018, 140:142-157.
[22] ELISSEEFF A, WESTON J. A kernel method for multi-labelled classification[C]//Proceedings of the 14th International Conference on Neural Information Processing Systems:Natural and Synthetic. Vancouver, Canada, 2001:681-687.
[23] TROHIDIS K, TSOUMAKAS G, KALLIRIS G, et al. Multi-label classification of music into emotions[C]//Proceedings of the 9th International Society for Music Information Retrieval Conference. Philadelphia, PA, 2008:325?330.
[24] BRIGGS F, HUANG Yonghong, RAICH R, et al. The 9th annual MLSP competition:new methods for acoustic classification of multiple simultaneous bird species in a noisy environment[C]//Proceedings of 2013 IEEE International Workshop on Machine Learning for Signal Processing. Southampton, UK, 2013:22?25.
相似文献/References:
[1]伞 冶,叶玉玲.粗糙集理论及其在智能系统中的应用[J].智能系统学报,2007,2(2):40.
 SAN Ye,YE Yu-ling.Rough set theory and its application in the intelligent systems[J].CAAI Transactions on Intelligent Systems,2007,2():40.
[2]孙正兴,张尧烨,李? 彬.基于线性规划分类器的相关反馈技术[J].智能系统学报,2007,2(3):34.
 SUN Zheng-xing,ZHANG Yao-ye,LI Bin.Applying relevance feedback with a linear programming classifier[J].CAAI Transactions on Intelligent Systems,2007,2():34.
[3]张志飞,苗夺谦.基于粗糙集的文本分类特征选择算法[J].智能系统学报,2009,4(5):453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
 ZHANG Zhi-fei,MIAO Duo-qian.Feature selection for text categorization based on rough set[J].CAAI Transactions on Intelligent Systems,2009,4():453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
[4]马胜蓝,叶东毅.一种带禁忌搜索的粒子并行子群最小约简算法[J].智能系统学报,2011,6(2):132.
 MA Shenglan,YE Dongyi.A minimum reduction algorithm based on parallel particle subswarm optimization with tabu search capability[J].CAAI Transactions on Intelligent Systems,2011,6():132.
[5]顾成杰,张顺颐,杜安源.结合粗糙集和禁忌搜索的网络流量特征选择[J].智能系统学报,2011,6(3):254.
 GU Chengjie,ZHANG Shunyi,DU Anyuan.Feature selection of network traffic using a rough set and tabu search[J].CAAI Transactions on Intelligent Systems,2011,6():254.
[6]杨成东,邓廷权.综合属性选择和删除的属性约简方法[J].智能系统学报,2013,8(2):183.[doi:10.3969/j.issn.1673-4785.201209056]
 YANG Chengdong,DENG Tingquan.An approach to attribute reduction combining attribute selection and deletion[J].CAAI Transactions on Intelligent Systems,2013,8():183.[doi:10.3969/j.issn.1673-4785.201209056]
[7]孙倩茹,王文敏,刘宏.视频序列的人体运动描述方法综述[J].智能系统学报,2013,8(3):189.
 SUN Qianru,WANG Wenmin,LIU Hong.Study of human action representation in video sequences[J].CAAI Transactions on Intelligent Systems,2013,8():189.
[8]曹晋,张莉,李凡长.一种基于支持向量数据描述的特征选择算法[J].智能系统学报,2015,10(2):215.[doi:10.3969/j.issn.1673-4785.201405063]
 CAO Jin,ZHANG Li,LI Fanzhang.A noval support vector data description-based feature selection method[J].CAAI Transactions on Intelligent Systems,2015,10():215.[doi:10.3969/j.issn.1673-4785.201405063]
[9]张佳骕,蒋亦樟,王士同.基于特征选择聚类方法的稀疏TSK模糊系统[J].智能系统学报,2015,10(4):583.[doi:10.3969/j.issn.1673-4785.201412001]
 ZHANG Jiasu,JIANG Yizhang,WANG Shitong.Sparse TSK fuzzy system based on feature selection clustering method[J].CAAI Transactions on Intelligent Systems,2015,10():583.[doi:10.3969/j.issn.1673-4785.201412001]
[10]乔丽娟,徐章艳,谢小军,等.基于知识粒度的不完备决策表的属性约简算法[J].智能系统学报,2016,11(1):129.[doi:10.11992/tis.201506029]
 QIAO Lijuan,XU Zhangyan,XIE Xiaojun,et al.Efficient attribute reduction algorithm for an incomplete decision table based on knowledge granulation[J].CAAI Transactions on Intelligent Systems,2016,11():129.[doi:10.11992/tis.201506029]
[11]陈曼如,张楠,童向荣,等.集值信息系统的快速正域约简[J].智能系统学报,2019,14(3):471.[doi:10.11992/tis.201804059]
 CHEN Manru,ZHANG Nan,TONG Xiangrong,et al.Quick positive region reduction in set-valued information systems[J].CAAI Transactions on Intelligent Systems,2019,14():471.[doi:10.11992/tis.201804059]

备注/Memo

收稿日期:2018-07-26。
基金项目:国家自然科学基金项目(61502213,61662023);江西省自然科学基金项目(20161BAB212047);江西省教育厅科技项目(GJJ180200).
作者简介:黄琴,女,1993年生,硕士研究生,主要研究方向为粒计算与机器学习。取得计算机软件著作权2项,发表学术论文3篇;钱文彬,男,1984年生,副教授,博士,主要研究方向为粒计算、知识发现与机器学习。主持完成国家青年科学基金项目和江西省青年科学基金项目各1项。发表学术论文20余篇;王映龙,男,1970年生,教授,博士,主要研究方向为知识发现与数据挖掘。参与国家自然科学基金项目2项,先后主持江西省自然科学基金项目3项。发表学术论文20余篇。
通讯作者:钱文彬.E-mail:qianwenbin1027@126.com

更新日期/Last Update: 1900-01-01
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134