[1]孙正兴,张尧烨,李 彬.基于线性规划分类器的相关反馈技术[J].智能系统学报,2007,2(03):34-38.
 SUN Zheng-xing,ZHANG Yao-ye,LI Bin.Applying relevance feedback with a linear programming classifier[J].CAAI Transactions on Intelligent Systems,2007,2(03):34-38.
点击复制

基于线性规划分类器的相关反馈技术(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第2卷
期数:
2007年03期
页码:
34-38
栏目:
出版日期:
2007-06-25

文章信息/Info

Title:
Applying relevance feedback with a linear programming classifier
文章编号:
1673-4785(2007)03-0034-05
作者:
孙正兴张尧烨李  彬
南京大学计算机软件新技术国家重点实验室, 江苏南京210093
Author(s):
SUN Zheng-xing ZHANG Yao-ye LI Bin 
State Key Lab for Novel Software Technology, Nanjing University, Nanjing 210093 , China
关键词:
相关反馈特征选择线性规划分类器草图检索
Keywords:
relevance feedback feature selection linear programming classifier sketch retrieval
分类号:
TP391;TP126
文献标志码:
A
摘要:
提出了一种基于线性规划分类器的相关反馈方法.所设计的线性规划分类器将特征选择和分类学习结合起来,使其不仅能在利用用户标注的小样本条件下进行实时训练,而且能根据样本对分类的贡献程度选择用户反馈中的敏感特征,从而能在相关反馈小样本训练条件下有效捕捉用户的反馈意图.针对草图检索的实验结果验证了所提出方法在相关反馈中的有效性.
Abstract:
This paper presents a method of applying relevance feedback to an auto mated sketch retrieval system by means of linear programming (LP) classification . A linear programming classifier was designed by combining feature selection wi th classification learning. The proposed classifier not only achieved real-time learning based on small sets of user-annotated samples, but also identified sens itive features from user’s interactive selections according to their contributi on to the classification of candidate sketches, effectively capturing the intent of user feedback with only a small set of training samples giving relevance fee dback. Experiments in sketch retrieval prove that the proposed method is both ef fective and efficient for relevance feedback. 

参考文献/References:

[1] ROCCHIO J. Relevance feedback in information retrieval[M]. PrenticeHal l, Inc, 1971.
[2]HUANG T S, ZHOU X S. Image retrieval with relevance feedback: From heuris ti c weight adjustment to optimal learning methods [A].International Conference i n Image Processing (ICIP’01)[C]. Thessaloniki, Greece, 2001.
[3]MACARTHUS S D, BRODLEY C E, SHYU C. Relevance feedback decision trees in c on tentbased image retrieval [A]. Proceedings of IEEE Workshop on ContentBase d Access to Image and Video Libraries[C].South Carolina, 2000. 
[4][JP2]COX I J, MILLER M L, MINKA T P,et al. The Bayesian image retrieval sys tem , PicHunter: Theory, implementation and psychophysical experiments [J]. IEEE Tra nsactions on Image Processing, 2000 , 9(1): 20-37.
[5]HONG P, TIAN Q, HUANG T S. Incorporate support vector machines to content ba sed image retrieval with relevant feedback [A]. Proceedings of IEEE Internatio nal Conference on Image Processing[C].Vancouver, Canada, 2000
[6]CHEN Y, ZHOU X S, HUANG T S. Oneclass SVM for learning in image retrieval [A ]. Proceedings of International Conference on Image Processing[C]. Thessaloni ki, Greece, 2001.
[7]CHU H H, CHI H C, HUANG K Z, et al. Biased support vector machine for rele va nce feedback in image retrieval [A]. Proceedings of International Joint Confer ence on Neural Networks[C].Budapest, Hungary, 2004
[8]JAIN A, ZONGKER D. Feature selection: evaluation, application, and small s am ple performance [J]. IEEE Transactions on Pattern Analysis and Machine Intelli gence, 1997,2(19):153-158.
[9]MANGASARIAN O L. Linear and nonlinear separation of patterns by linear pro gramming [J]. Operations Research, 1965, 9(5): 444-452.
[10]BENNETT K P, MANGASARIAN O L. Robust linear programming discrimin ation of t ow linearly inseparable sets [J]. Optimization Method and Software, 1992, 1(1) : 23-34.
[11]BRADLEY P S, MANGASARIAN O L. Feature selection via concave minimization an d support vector machines [A].Proceeding of 5th International Conference on M achine Learning[C].[s.l.],1998. 
[12]GUO G, DYER C R. Learning from examples in the small sample case: face ex pression recognition [J]. IEEE Transactions on Systems Man and Cybernetics, 2 005, 35(3): 477-488.
[13]LIANG S, SUN Z X, LI B. Sketch retrieval based on spatial relations [A] . Pr oceedings of International Conference on Computer Graphics, Imaging and Visualiz ation (cgiv05)[C]. Beijing, China, 2005.

相似文献/References:

[1]张 菁,沈兰荪,David Dagan FENG.图像搜索中人机交互技术的新进展[J].智能系统学报,2007,2(04):14.
 ZHANG Jing,SHEN Lan-sun,David Dagan FENG.computer interaction technology in image searches: a survey[J].CAAI Transactions on Intelligent Systems,2007,2(03):14.
[2]张志飞,苗夺谦.基于粗糙集的文本分类特征选择算法[J].智能系统学报,2009,4(05):453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
 ZHANG Zhi-fei,MIAO Duo-qian.Feature selection for text categorization based on rough set[J].CAAI Transactions on Intelligent Systems,2009,4(03):453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
[3]顾成杰,张顺颐,杜安源.结合粗糙集和禁忌搜索的网络流量特征选择[J].智能系统学报,2011,6(03):254.
 GU Chengjie,ZHANG Shunyi,DU Anyuan.Feature selection of network traffic using a rough set and tabu search[J].CAAI Transactions on Intelligent Systems,2011,6(03):254.
[4]孙倩茹,王文敏,刘宏.视频序列的人体运动描述方法综述[J].智能系统学报,2013,8(03):189.
 SUN Qianru,WANG Wenmin,LIU Hong.Study of human action representation in video sequences[J].CAAI Transactions on Intelligent Systems,2013,8(03):189.
[5]曹晋,张莉,李凡长.一种基于支持向量数据描述的特征选择算法[J].智能系统学报,2015,10(02):215.[doi:10.3969/j.issn.1673-4785.201405063]
 CAO Jin,ZHANG Li,LI Fanzhang.A noval support vector data description-based feature selection method[J].CAAI Transactions on Intelligent Systems,2015,10(03):215.[doi:10.3969/j.issn.1673-4785.201405063]
[6]张佳骕,蒋亦樟,王士同.基于特征选择聚类方法的稀疏TSK模糊系统[J].智能系统学报,2015,10(04):583.[doi:10.3969/j.issn.1673-4785.201412001]
 ZHANG Jiasu,JIANG Yizhang,WANG Shitong.Sparse TSK fuzzy system based on feature selection clustering method[J].CAAI Transactions on Intelligent Systems,2015,10(03):583.[doi:10.3969/j.issn.1673-4785.201412001]
[7]陈玉明,吴克寿,李向军.基因表达数据在邻域关系中的特征选择[J].智能系统学报,2014,9(02):210.[doi:10.3969/j.issn.1673-4785.201307014]
 CHEN Yuming,WU Keshou,LI Xiangjun.Gene expression data feature selection with neighborhood relation[J].CAAI Transactions on Intelligent Systems,2014,9(03):210.[doi:10.3969/j.issn.1673-4785.201307014]
[8]郭雨萌,李国正.一种多标记数据的过滤式特征选择框架[J].智能系统学报,2014,9(03):292.[doi:10.3969/j.issn.1673-4785.201403064]
 GUO Yumeng,LI Guozheng.A filtering framework for the multi-label feature selection[J].CAAI Transactions on Intelligent Systems,2014,9(03):292.[doi:10.3969/j.issn.1673-4785.201403064]
[9]滕旭阳,董红斌,孙静.面向特征选择问题的协同演化方法[J].智能系统学报,2017,12(01):24.[doi:10.11992/tis.201611029]
 TENG Xuyang,DONG Hongbin,SUN Jing.Co-evolutionary algorithm for feature selection[J].CAAI Transactions on Intelligent Systems,2017,12(03):24.[doi:10.11992/tis.201611029]
[10]路子祥,屠黎阳,祖辰,等.基于脑连接网络的阿尔茨海默病临床变量值预测[J].智能系统学报,2017,12(03):355.[doi:10.11992/tis.201607020]
 LU Zixiang,TU Liyang,ZU Chen,et al.Prediction of clinical variables in Alzheimer’s disease using brain connective networks[J].CAAI Transactions on Intelligent Systems,2017,12(03):355.[doi:10.11992/tis.201607020]

备注/Memo

备注/Memo:
收稿日期:2006-10-31.
基金项目:
国家自然科学基金资助项目(69903006,60373065 );
新世纪优秀人才支持计划资助项目(NCET040460)
作者简介:
孙正兴,男,1964年生,博士,教授、博士生导师.主要研究方向为多媒体计算、计算机视觉和智能人机交互,2004年度教育部“新世纪优秀人才”,先后获省部级科技进步三等奖3次.已在国内外重要学术刊物上发表学术论文80余篇,出版专著2部. E-mail:szx@nju.edu.cn. 
张尧烨,男,1983年生,硕士研究生,主要研究方向为信息检索与智能人机交互.
李 彬,男,1982年生,硕士研究生,主要研究方向为信息检索与智能人机交互.
更新日期/Last Update: 2009-05-07