[1]伞 冶,叶玉玲.粗糙集理论及其在智能系统中的应用[J].智能系统学报,2007,2(02):40-47.
 SAN Ye,YE Yu-ling.Rough set theory and its application in the intelligent systems[J].CAAI Transactions on Intelligent Systems,2007,2(02):40-47.
点击复制

粗糙集理论及其在智能系统中的应用(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第2卷
期数:
2007年02期
页码:
40-47
栏目:
出版日期:
2007-04-25

文章信息/Info

Title:
Rough set theory and its application in the intelligent systems
文章编号:
1673-4785(2007)02-0040-08
作者:
伞 冶叶玉玲
哈尔滨工业大学控制与仿真中心,黑龙江哈尔滨150080
Author(s):
SAN Ye YE Yu-ling
Control and Simulation Center, Harbin Institute of Technology, Harbin 150080, C hina
关键词:
粗糙集属性约简智能系统粗糙神经网络
Keywords:
rough set attribute reduction intelligent system rough neural network
分类号:
TP18
文献标志码:
A
摘要:
粗糙集理论是一种新型的处理含糊和不确定知识的数学工具,在智能系统中得到了广泛的应用.介绍了经典粗糙集理论的基本思想,上下近似集、属性约简和核等基本概念以及粗糙集的研究现状.介绍了粗糙集理论在智能系统中的应用,主要包括基于粗糙集理论的属性约简作为数据预处理的手段,基于粗糙集理论的相关性分析和基于粗糙集理论的系统建模和控制.指出了粗糙集理论在应用中遇到的问题和可能的研究方向.
Abstract:
The rough set theory is a new mathematical tool to study vague and unc ertain information, and is widely used in intelligent systems. In this paper, th e basic ideas of rough set theory are introduced,and the notion of up and low approximation sets, attribute reduction, core and some extensions of rough set t heory are also presented. Then the application of rough set theory in intelligen t systems is explored, mainly including data preprocessing method by using attri bute reduction based on rough set theory, analysis of correlations between attri butes and system, modeling and control. Finally, the difficulties and possible f ields for the application of rough set theory are discussed. 

参考文献/References:

[1]PAL S, SKOWRON A. Rough fuzzy hybridization: a new trend in de cision making[M]. Singapore: SpringerVerlag, 1999.
[2]WALCZAK B, MASSART D L. Rough sets theory[J]. Chemometrics and Int elligent Laboratory Systems,1999, 47:1-16.
[3]YAO Y Y.Constructive and algebraic methods of the theory of rough s ets[J]. Journal of Information Sciences,1998, 109:21-47.
[4]WU Weizhi, ZHANG Wenxiu. Constructive and axiomatic approaches of fuzzy ap proximation operators[J]. Information Sciences,2004, 159 : 233-254.
[5]PAWLAK Z. Rough set approach to knowledge-based decision support[J]. Eur opean Journal of Operational Research,1997, 99: 48-57.
[6]PAWLAK Z. Rough sets and intelligent data analysis[J]. Information Scien ces,2002,147:1-12.
[7]LINGRAS P J, YAO Y Y. Data mining using extensions of the rough set model[ J]. Journal of the American Society for Information Science, 1998,49(5):415-422.
[8]黄金杰.粗糙集理论在智能信息处理机控制中的应用研究[D].哈尔滨:哈尔滨工业大学,2004.
 HUANG Jinjie.Research and application of rough sets theory in the control of int elligent information processor[D].Harbin:Harbin Institute of Technology,2004.
[9]YAO Y Y. Two views of the theory of rough sets in finite universes[ J]. International Journal of Approximate Reasoning, 1996, 15(2): 291-317.
[10]张文修,仇国芳.基于粗糙集的不确定决策[M].北京:清华大学出版社, 2005.
[11]KRYSZKIEWICZ M. Rough set approach to incomplete information systems[J] . Information Sciences, 1998, 112(1): 39-49.
[12]GRECO S, MATARAZZO B, SLOWINSKI R. Rough sets theory for multicriteria de cision analysis[J]. European Journal of Operational Research, 2001, 129(1): 1- 47.
[13]HU Qinghua, YU Daren, XIE Zongxia. Informationpreserving hybrid da ta red uction based on fuzzy-rough techniques[J]. Pattern Recognition Letters, 2006, 27(5): 414-423.
[14]YAO Yiyu, CHEN Yaohua. Subsystem based generalizations of rough set a ppro ximations[A]. Proceedings of 15th International Symposium on Methodologies for Intelligent Systems[C].Berlin, 2005.
[15]YAO Y Y. Relational interpretations of neighborhood operators and rough s et approximation operators[J]. Information Sciences, 1998, 111(1-4): 239-259. 
[16]SLOWINISKI R. Intelligent Decision Support[M]. Dordrecht: Kluwer Academ ic, 1992.
[17]GUAN J W, BELL D A. Rough computational methods for information systems a rtificial intelligence[J]. 1998, 105(1): 77-103.
[18]王国胤,于 洪,杨大春.基于条件信息熵的决策表约简[J].计算机学报, 2002, 25(7):759-766.
WANG Guoyin, YU Hong, YANG Dachun. Decision table reduction based on conditio nal information entropy[J]. Chinese J Computers, 2002, 25(7): 759-766.
[19]JAKUB W. Finding minimal reducts using genetic algorithm[R]. ICS Research Report 16/95, Warsaw university of Technology, 1995
[20]乔 斌,李玉榕,蒋静坪.粗糙集理论的分层递阶约简算法及其信息论基础[ J].控制理论与应用,2004,21(2):195-199.
 QIAO Bin, LI Yurong, JIANG Jingping. Hierarchical reduction approach of rough se ts theory and its basis on the information theory[J]. Control Theory & Applica tion, 2004, 21(2): 195-199.
[21]MITRA S, SANKAR K P, MITRA P. Data mining in soft computing framew ork: a survey[J]. IEEE Transactions on Neural Networks, 2002, 13(1): 3-14.
[22]BANERJEE M, MITRA S, SANKAR K P. Rough fuzzy MLP: knowledge encoding and c lassification[J]. IEEE Transactions on Neural Networks, 1998, 9(6):1203-1216. 
[23]GARDNER M W, DORLING S R. Artificial neural networks (the multilayer perc eptron)a review of applications in the atmospheric sciences[J]. Atmospheric Environment, 1998, 32(14-15): 2627-2636.
[24]AHN B S, CHO S S, KIM C Y. The integrated methodology of rough set theory and artificial neural network for business failure prediction[J]. Expert Syst ems with Application,2000, 18 (4): 65-74.
[25]HU Qinghua, YU Daren, XIE Zongxia. Improvement on classification performa nce based on multiple reduct ensemble[A]. Proceedings of the 2004 IEEE Confere nce on Cybernetics and Intelligent Systems[C]. Singapore, 2004.
[26]DIMITRAS A I, SLOWINSKI R, SUSMAGA R, et al. Business failure predictio n using rough sets[J]. European Journal of Operational Research, 1999, 114(2): 263-280.
[27]GAO Yun, HOU Yuanbin. Application of rough set theory on system modeling [A]. Proceedings of the 5th World Congress on Intelligent Control and Automati on[C]. Hangzhou,2004.
[28]LINGRAS P J. Rough neural networks[A]. Proc of sixth international c onference on information processing and management of uncertainty in knowledge b ased systems[C]. Granada, Spain, 1996.
[29]LINGRAS P. Comparison of neofuzzy and rough neural networks[J]. Informa tion Sciences, 1998,110(3): 207-215.
[30]LIU Hongjian, TUO Hongya, LIU Yuncai. Rough neural network of variable pr ecision[J]. Neural Processing Letters, 2004, 19(1): 73-87,.
[31]何 明,李 博,马兆丰,等.粗糙集理论框架下的神经网络建模研究及应用[J].控制与决策,2005, 20(7): 782-785.
 HE Ming, LI Bo, MA Zhaofeng,et al. On the neural network modelling with su pport rough set theory[J]. Control and Decision, 2005, 20(7): 782-785.
[32]AN A, SHAN Ning, CHAN C, et al. Discovering rules for water dema nd prediction: an enhanced roughset approach[J]. Engng Applic Artif Intell, 1 996, 9(6): 645-653.
[33]TSUMOTO S. Automated extraction of medical expert system rules from clini cal databases based on rough set theory[J]. Information Sciences, 1998, 112(1) : 67-84.
[34]SHEN Lixiang, FRANCIS E H T, QU Liangsheng, et al. Fault diagnosis using rough sets theory[J]. Computers in Industry, 2000, 43(1): 61-72.

相似文献/References:

[1]尹林子,阳春华,桂卫华,等.规则分层约简算法[J].智能系统学报,2008,3(06):492.
 YIN Lin-zi,YANG Chun-hua,GUI Wei-hua,et al.Hierarchical reduction of rules[J].CAAI Transactions on Intelligent Systems,2008,3(02):492.
[2]毋 非,封化民,申晓晔.容错粗糙模型的事件检测研究[J].智能系统学报,2009,4(02):112.
 WU Fei,FENG Hua-min,SHEN Xiao-ye.Research on event detection based on the tolerance rough set model[J].CAAI Transactions on Intelligent Systems,2009,4(02):112.
[3]王国胤,张清华,胡 军.粒计算研究综述[J].智能系统学报,2007,2(06):8.
 WANG Guo-yin,ZHANG Qing-hua,HU Jun.An overview of granular computing[J].CAAI Transactions on Intelligent Systems,2007,2(02):8.
[4]裴小兵,吴 涛,陆永忠.最小化决策规则集的计算方法[J].智能系统学报,2007,2(06):65.
 PEI Xiao-bing,WU Tao,LU Yong-zhong.Calculating method for a minimal set of decision rules[J].CAAI Transactions on Intelligent Systems,2007,2(02):65.
[5]张志飞,苗夺谦.基于粗糙集的文本分类特征选择算法[J].智能系统学报,2009,4(05):453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
 ZHANG Zhi-fei,MIAO Duo-qian.Feature selection for text categorization based on rough set[J].CAAI Transactions on Intelligent Systems,2009,4(02):453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
[6]顾成杰,张顺颐,杜安源.结合粗糙集和禁忌搜索的网络流量特征选择[J].智能系统学报,2011,6(03):254.
 GU Chengjie,ZHANG Shunyi,DU Anyuan.Feature selection of network traffic using a rough set and tabu search[J].CAAI Transactions on Intelligent Systems,2011,6(02):254.
[7]杨成东,邓廷权.综合属性选择和删除的属性约简方法[J].智能系统学报,2013,8(02):183.[doi:10.3969/j.issn.1673-4785.201209056]
 YANG Chengdong,DENG Tingquan.An approach to attribute reduction combining attribute selection and deletion[J].CAAI Transactions on Intelligent Systems,2013,8(02):183.[doi:10.3969/j.issn.1673-4785.201209056]
[8]周丹晨.采用粒计算的属性权重确定方法[J].智能系统学报,2015,10(02):273.[doi:10.3969/j.issn.1673-4785.201312008]
 ZHOU Danchen.A method for ascertaining the weight of attributes based on granular computing[J].CAAI Transactions on Intelligent Systems,2015,10(02):273.[doi:10.3969/j.issn.1673-4785.201312008]
[9]陈坚,陈健,邵毅明,等.粗糙集的过饱和多交叉口协同优化模型研究[J].智能系统学报,2015,10(5):783.[doi:10.11992/tis.201406045]
 CHEN Jian,CHEN Jian,SHAO Yiming,et al.Collaborative optimization model for oversaturated multiple intersections based on the rough set theory[J].CAAI Transactions on Intelligent Systems,2015,10(02):783.[doi:10.11992/tis.201406045]
[10]王金英,韩晓冰,王艳平.二型直觉模糊粗糙集[J].智能系统学报,2015,10(6):943.[doi:10.11992/tis.201412013]
 WANG Jinying,HAN Xiaobing,WANG Yanping.Type-2 intuitionistic fuzzy rough sets[J].CAAI Transactions on Intelligent Systems,2015,10(02):943.[doi:10.11992/tis.201412013]
[11]马胜蓝,叶东毅.一种带禁忌搜索的粒子并行子群最小约简算法[J].智能系统学报,2011,6(02):132.
 MA Shenglan,YE Dongyi.A minimum reduction algorithm based on parallel particle subswarm optimization with tabu search capability[J].CAAI Transactions on Intelligent Systems,2011,6(02):132.
[12]钱进,朱亚炎.面向成组对象集的增量式属性约简算法[J].智能系统学报,2016,11(4):496.[doi:10.11992/tis.201606005]
 QIAN Jin,ZHU Yayan.An incremental attribute reduction algorithm for group objects[J].CAAI Transactions on Intelligent Systems,2016,11(02):496.[doi:10.11992/tis.201606005]
[13]冯丹,黄洋,石云鹏,等.连续型数据的辨识矩阵属性约简方法[J].智能系统学报,2017,12(03):371.[doi:10.11992/tis.201704032]
 FENG Dan,HUANG Yang,SHI Yunpeng,et al.A discernibility matrix-based attribute reduction for continuous data[J].CAAI Transactions on Intelligent Systems,2017,12(02):371.[doi:10.11992/tis.201704032]
[14]高学义,张楠,童向荣,等.广义分布保持属性约简研究[J].智能系统学报,2017,12(03):377.[doi:10.11992/tis.201704025]
 GAO Xueyi,ZHANG Nan,TONG Xiangrong,et al.Research on attribute reduction using generalized distribution preservation[J].CAAI Transactions on Intelligent Systems,2017,12(02):377.[doi:10.11992/tis.201704025]
[15]陈曼如,张楠,童向荣,等.集值信息系统的快速正域约简[J].智能系统学报,2019,14(03):471.[doi:10.11992/tis.201804059]
 CHEN Manru,ZHANG Nan,TONG Xiangrong,et al.Quick positive region reduction in set-valued information systems[J].CAAI Transactions on Intelligent Systems,2019,14(02):471.[doi:10.11992/tis.201804059]
[16]黄琴,钱文彬,王映龙,等.代价敏感数据的多标记特征选择算法[J].智能系统学报,2019,14(05):929.[doi:10.11992/tis.201807027]
 HUANG Qin,QIAN Wenbin,WANG Yinglong,et al.Multi-label feature selection algorithm for cost-sensitive data[J].CAAI Transactions on Intelligent Systems,2019,14(02):929.[doi:10.11992/tis.201807027]
[17]唐玉凯,张楠,童向荣,等.不完备决策系统下的多特定类广义决策约简[J].智能系统学报,2019,14(06):1199.[doi:10.11992/tis.201905059]
 TANG Yukai,ZHANG Nan,TONG Xiangrong,et al.The multi-class-specific generalized decision preservation reduction in incomplete decision systems[J].CAAI Transactions on Intelligent Systems,2019,14(02):1199.[doi:10.11992/tis.201905059]

备注/Memo

备注/Memo:
收稿日期:2006-11-09.
基金项目:国家自然科学基金资助项目(60474069).
作者简介:
伞冶,男,1951年生,教授,博士生导师,中国系统仿真学会理事,黑龙江省系统仿真学会常务理事. 主要研究方向为复杂大系统控制与仿真. 
E-mail: sanye@hit.edu.cn.
叶玉玲,男,1979年生,博士研究生,主要研究方向为非线性复杂动态系统建模与预测. E-mail: yeyuling@hit.edu.cn.
更新日期/Last Update: 2009-05-06