[1]王建,吴锡生.基于改进的稀疏表示和PCNN的图像融合算法研究[J].智能系统学报,2019,14(5):922-928.[doi:10.11992/tis.201805045]
 WANG Jian,WU Xisheng.Image fusion based on the improved sparse representation and PCNN[J].CAAI Transactions on Intelligent Systems,2019,14(5):922-928.[doi:10.11992/tis.201805045]
点击复制

基于改进的稀疏表示和PCNN的图像融合算法研究

参考文献/References:
[1] 王卫卫, 水鹏朗, 宋国乡. 小波域多聚焦图像融合算法[J]. 系统工程与电子技术, 2004, 26(5):668-671 WANG Weiwei, SHUI Penglang, SONG Guoxiang. Multi-focus image fusion in wavelet domain[J]. Systems engineering and electronics, 2004, 26(5):668-671
[2] LI Shutao, KANG Xudong, FANG Leyuan, et al. Pixel-level image fusion:A survey of the state of the art[J]. Information fusion, 2017, 33:100-112.
[3] ROCKINGER O, FECHNER T. Pixel-level image fusion:the case of image sequences[C]//Proceedings of SPIE 3374, Signal Processing, Sensor Fusion, and Target Recognition VⅡ. Orlando, USA, 1998:378–388.
[4] EHLERS M. Multisensor image fusion techniques in remote sensing[J]. ISPRS journal of photogrammetry and remote sensing, 1991, 46(1):19-30.
[5] 赵景朝, 曲仕茹. 基于Curvelet变换与自适应PCNN的红外与可见光图像融合[J]. 西北工业大学学报, 2011, 29(6):849-853 ZHAO Jingchao, QU Shiru. A better algorithm for fusion of infrared and visible image based on Curvelet transform and adaptive pulse coupled neural networks (PCNN)[J]. Journal of Northwestern Polytechnical University, 2011, 29(6):849-853
[6] 张雄美, 李俊山, 易昭湘, 等. 非抽样轮廓波变换域图像融合方法研究[J]. 电光与控制, 2008, 15(7):16-19 ZHANG Xiongmei, LI Junshan, YI Zhaoxiang, et al. Image fusion based on nonsubsampled contourlet[J]. Electronics optics and control, 2008, 15(7):16-19
[7] EASLEY G R, LABATE D, LIM W Q. Optimally sparse image representations using shearlets[C]//Proceedings of 2006 Fortieth Asilomar Conference on Signals, Systems and Computers. Pacific Grove, USA, 2006:974–978.
[8] YANG Bin, LI Shutao. Multifocus image fusion and restoration with sparse representation[J]. IEEE transactions on instrumentation and measurement, 2010, 59(4):884-892.
[9] BROUSSARD R P, Rogers S K, Oxley M E, et al. Physiologically motivated image fusion for object detection using a pulse coupled neural network[J]. IEEE Transactions on neural networks, 1999, 10(3):554-563.
[10] 赵春晖, 郭蕴霆. 一种快速的基于稀疏表示和非下采样轮廓波变换的图像融合算法[J]. 电子与信息学报, 2016, 38(7):1773-1780 ZHAO Chunhui, GUO Yunting. Fast image fusion algorithm based on sparse representation and non-subsampled contourlet transform[J]. Journal of electronics and information technology, 2016, 38(7):1773-1780
[11] XIANG Fengtao, JIAN Zhang, LIANG Pan, et al. Robust image fusion with block sparse representation and online dictionary learning[J]. IET image processing, 2018, 12(3):345-353.
[12] 谢秋莹, 易本顺, 柯祖福, 等. 基于SML和PCNN的NSCT域多聚焦图像融合[J]. 计算机科学, 2017, 44(6):266-269, 282 XIE Qiuying, YI Benshun, KE Zufu, et al. Multi-focus image fusion based on SML and PCNN in NSCT domain[J]. Computer science, 2017, 44(6):266-269, 282
[13] 王红梅, 付浩. 脉冲耦合神经网络自适应图像融合算法研究[J]. 计算机工程与应用, 2017, 53(7):177-180 WANG Hongmei, FU Hao. Adaptive image fusion algorithm based on pulse coupled neural networks[J]. Computer engineering and applications, 2017, 53(7):177-180
[14] 张宝华, 吕晓琪. 一种复合型PCNN的NSCT域多聚焦图像融合方法[J]. 小型微型计算机系统, 2014, 35(2):393-396 ZHANG Baohua, LV Xiaoqi. Multi-focus image fusion algorithm based on compound PCNN in NSCT domain[J]. Journal of chinese computer systems, 2014, 35(2):393-396
[15] DING Shifei, ZHAO Xingyu, XU Hui, et al. NSCT-PCNN image fusion based on image gradient motivation[J]. IET computer vision, 2018, 12(4):377-383.
[16] 田娟秀, 刘国才. 基于NSST变换和PCNN的医学图像融合方法[J]. 中国医学物理学杂志, 2018, 35(8):914-920 TIAN Juanxiu, LIU Guocai. Medical image fusion method based on non-subsampled shearlet transform and pulse coupled neural network[J]. Chinese journal of medical physics, 2018, 35(8):914-920
[17] 夏景明, 陈轶鸣, 陈轶才, 等. 基于稀疏表示和NSCT-PCNN的红外与可见光图像融合[J]. 电光与控制, 2018, 25(6):1-6 XIA Jingming, CHEN Yiming, CHEN Yicai, et al. Fusion of infrared and visible images based on sparse representation and NSCT-PCNN[J]. Electronics optics and control, 2018, 25(6):1-6
[18] ZHANG Qiang, LI Baoxin. Discriminative K-SVD for dictionary learning in face recognition[C]//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, USA, 2010:2691–2698.
[19] HONG Richang. Objective image fusion performance measure[J]. Military technical courier, 2000, 56(2):181-193.
[20] 王峰, 程咏梅. 基于MNLMF和SF方向滤波的图像融合算法[J]. 控制与决策, 2017, 32(12):2183-2189 WANG Feng, CHENG Yongmei. Image fusion method based on multi-scale non-local mean filter and shear direction filter[J]. Control and decision, 2017, 32(12):2183-2189
相似文献/References:
[1]李庆武,蔡艳梅,徐立中.基于分块分类的智能视频监控背景更新算法[J].智能系统学报,2010,5(3):272.
 LI Qing-wu,CAI Yan-mei,XU Li-zhong.Background update algorithm based on blocks classification forintelligent video surveillance[J].CAAI Transactions on Intelligent Systems,2010,5(5):272.
[2]邵真天,袁杰.一种基于曲波变换的图像去块算法[J].智能系统学报,2012,7(2):102.
 SHAO Zhentian,YUAN Jie.An image deblocking algorithm based on curvelet transformation[J].CAAI Transactions on Intelligent Systems,2012,7(5):102.
[3]王锦榕,袁学海,刘增良.基于图像处理技术的瞳孔和角膜反射中心提取算法[J].智能系统学报,2012,7(5):423.
 WANG Jinrong,YUAN Xuehai,LIU Zengliang.An extraction method of pupil and corneal reflection centers based on image processing technology[J].CAAI Transactions on Intelligent Systems,2012,7(5):423.
[4]李洋,焦淑红,孙新童.基于IHS和小波变换的可见光与红外图像融合[J].智能系统学报,2012,7(6):554.
 LI Yang,JIAO Shuhong,SUN Xintong.Fusion of visual and infrared images based on IHS and wavelet transforms[J].CAAI Transactions on Intelligent Systems,2012,7(5):554.
[5]傅博,姜勇,王洪光,等.输电线路巡检图像智能诊断系统[J].智能系统学报,2016,11(1):70.[doi:10.11992/tis.201503043]
 FU Bo,JIANG Yong,WANG Hongguang,et al.Intelligent diagnosis system for patrol check images of power transmission lines[J].CAAI Transactions on Intelligent Systems,2016,11(5):70.[doi:10.11992/tis.201503043]
[6]梁义辉,战强.一种面向无线图像传输的视觉平台[J].智能系统学报,2016,11(5):608.[doi:10.11992/tis.201512014]
 LIANG Yihui,ZHAN Qiang.A visual platform for wireless image transmission[J].CAAI Transactions on Intelligent Systems,2016,11(5):608.[doi:10.11992/tis.201512014]
[7]李霞丽,吴立成,樊艳明.易于硬件实现的压缩感知观测矩阵的研究与构造[J].智能系统学报,2017,12(3):279.[doi:10.11992/tis.201606037]
 LI Xiali,WU Licheng,FAN Yanming.Study and construction of a compressed sensing measurement matrix that is easy to implement in hardware[J].CAAI Transactions on Intelligent Systems,2017,12(5):279.[doi:10.11992/tis.201606037]
[8]姜婷,袭肖明,岳厚光.基于分布先验的半监督FCM的肺结节分类[J].智能系统学报,2017,12(5):729.[doi:10.11992/tis.201706018]
 JIANG Ting,XI Xiaoming,YUE Houguang.Classification of pulmonary nodules by semi-supervised FCM based on prior distribution[J].CAAI Transactions on Intelligent Systems,2017,12(5):729.[doi:10.11992/tis.201706018]
[9]王科俊,赵彦东,邢向磊.深度学习在无人驾驶汽车领域应用的研究进展[J].智能系统学报,2018,13(1):55.[doi:10.11992/tis.201609029]
 WANG Kejun,ZHAO Yandong,XING Xianglei.Deep learning in driverless vehicles[J].CAAI Transactions on Intelligent Systems,2018,13(5):55.[doi:10.11992/tis.201609029]
[10]刘彪,黄蓉蓉,林和,等.基于卷积神经网络的盲文音乐识别研究[J].智能系统学报,2019,14(1):186.[doi:10.11992/tis.201805002]
 LIU Biao,HUANG Rongrong,LIN He,et al.Research on braille music recognition based on convolutional neural networks[J].CAAI Transactions on Intelligent Systems,2019,14(5):186.[doi:10.11992/tis.201805002]
[11]任晓霞,孙秀明,耿鹏,等.多小波和NSDFB组合域递归滤波多聚焦图像融合[J].智能系统学报,2016,11(2):241.[doi:10.11992/tis.201509017]
 REN Xiaoxia,SUN Xiuming,GENG Peng,et al.Multifocus image fusion using a recursive filter in the combined domain of multiwavelets and NSDFB[J].CAAI Transactions on Intelligent Systems,2016,11(5):241.[doi:10.11992/tis.201509017]

备注/Memo

收稿日期:2018-05-29。
基金项目:国家自然科学基金项目(61672265).
作者简介:王建,男,1992年生,硕士研究生,主要研究方向为图像融合;吴锡生,男,1959年生,教授,博士,主要研究方向为图像处理和模式识别。曾获江苏省科技进步三等奖2次,中国纺织协会和无锡市科技进步奖3次,软件著作权授权1项,发明专利授权3项。发表学术论文40余篇。
通讯作者:吴锡生.E-mail:wxs@jiangnan.edu.cn

更新日期/Last Update: 1900-01-01
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134