[1]顾成杰,张顺颐,杜安源.结合粗糙集和禁忌搜索的网络流量特征选择[J].智能系统学报,2011,(03):254-260.
 GU Chengjie,ZHANG Shunyi,DU Anyuan.Feature selection of network traffic using a rough set and tabu search[J].CAAI Transactions on Intelligent Systems,2011,(03):254-260.
点击复制

结合粗糙集和禁忌搜索的网络流量特征选择(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
期数:
2011年03期
页码:
254-260
栏目:
出版日期:
2011-06-25

文章信息/Info

Title:
Feature selection of network traffic using a rough set and tabu search
文章编号:
1673-4785(2011)03-0254-07
作者:
顾成杰1张顺颐1杜安源2
1.南京邮电大学 信息网络技术研究所,江苏 南京 210003;
2.中国移动通信集团设计院有限公司 安徽分公司,安徽 合肥 230041
Author(s):
GU Chengjie1 ZHANG Shunyi1 DU Anyuan2
1.Institute of Information Network Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2.Anhui Branch, China Mobile Group Design Institute, Hefei 230041, China
关键词:
粗糙集禁忌搜索特征选择网络流量
Keywords:
rough set tabu search feature selection network traffic
分类号:
TP391
文献标志码:
A
摘要:
针对网络流量特征属性的优化选择问题,提出了一种结合粗糙集和禁忌搜索的网络流量特征选择方法(RSTS).该方法通过粗糙集算法对网络流量特征属性进行约简,将所得到的特征子集作为禁忌搜索的初始解,并利用禁忌搜索得到最优特征子集.实验验证RSTS方法优于基于GA的特征选择方法和基于IG的特征选择方法,能够有效地去除网络流量的冗余特征属性,提高网络流量分类精度.
Abstract:
A feature selection of network traffic using a rough set and tabu search (RSTS) was proposed for the purpose of optimization in the feature selection of traffic classification. This approach reduced the traffic feature attribute with a rough set and established the feature subset as the initial value of a tabu search, as well as the optimal feature subset on the basis of a tabu search. The optimal feature subset with a tabu search can be selected on the basis of a feature subset. In contrast with the traditional feature selection methods based on GA and IG, RSTS was validated optimal by experimental results. It can diminish redundant feature attribution of network traffic effectively and greatly improve the classification accuracy.

参考文献/References:

[1]NGUYEN T T, ARMITAGE G. A survey of techniques for internet traffic classification using machine learning[J]. IEEE Communications Surveys and Tutorials, 2008, 10(4): 5676.
[2]CALLADO A, KAMIENSKI C. A survey on internet traffic identification[J]. IEEE Communications Surveys and Tutorials, 2009, 11(3): 3752.
[3]ESTE A, GRINGOLI F, SALGARELLI L. Support vector machines for TCP traffic classification[J]. Computer Networks, 2009, 53(14): 24762490.
[4]POLAT K, GUNES S. A new feature selection method on classification of medical datasets: kernel Fscore feature selection[J]. Expert Systems with Applications, 2009, 36(7): 1036710373.
[5]PATRICIA E N, ENGELBRECHT A P. A decision rulebased method for feature selection in predictive data mining[J]. Expert Systems with Applications, 2010, 37(1): 602609.
[6]BARALDI P, PEDRONI N, ZIO E. Application of a nicked Pareto genetic algorithm for selecting features for nuclear transients classification[J]. International Journal of Intelligent Systems, 2009, 24(2): 118151.
[7]KIRA K, RENDELL L A. Feature selection problem: traditional methods and a new algorithm[C]//Proceedings of the Tenth National Conference on Artificial Intelligence. San Jose, USA, 1992: 129134.
[8]LI Yongming, ZHANG Sujuan, ZENG Xiaoping. Research of multipopulation agent genetic algorithm for feature selection[J]. Expert Systems with Applications, 2009, 36(7): 1157011581.
[9]HUANG Chenglung, DUN Jianfan. A distributed PSOSVM hybrid system with feature selection and parameter optimization[J]. Applied Soft Computing Journal, 2008, 8(4): 13811391.
[10]ZHANG Li, MENG Xiangru, WU Weijia, et al. Network fault feature selection based on adaptive immune clone selection algorithm[C]//Proceedings of the 2009 International Joint Conference on Computational Sciences and Optimization. Sanya, China, 2009: 969973.
[11]SWINIARSKI R W, SKOWRON A. Rough set methods in feature selection and recognition[J]. Pattern Recognition Letters, 2003, 24(6): 833849.
[12]殷志伟,张健沛.基于浓缩布尔矩阵的属性约简算法[J].哈尔滨工程大学学报, 2009, 30(3): 307311.
YIN Zhiwei, ZHANG Jianpei.An attribute reduction algorithm based on a concentration Boolean matrix[J]. Journal of Harbin Engineering University, 2009, 30(3): 307311.
[13]THANGAVEL K, PETHALAKSHMI A. Dimensionality reduction based on rough set theory: a review[J]. Applied Soft Computing Journal, 2009, 9(1): 112.
[14]WANG Yong, LI Lin, NI Jun, et al. Feature selection using tabu search with longterm memories and probabilistic neural networks[J]. Pattern Recognition Letters, 2009, 30(7): 661670.
[15]HEDAR A R, WANG J, FUKUSHIMA M. Tabu search〖LL〗for attribute reduction in rough set theory[J]. Soft Computing, 2008, 12(9): 909918.
[16]CHIOU Chiewun, WU Muhcheng. A GAtabu algorithm for scheduling inline steppers in lowyield scenarios[J]. Expert Systems with Applications, 2009, 36(9): 1192511933.
[17]MOORE A W, ZUEV D. Internet traffic classification using Bayesian analysis techniques[C]//International Conference on Measurement and Modeling of Computer Systems. New York, USA, 2005: 5060.
[18]YANG Y M, PEDERSEN J O. A comparative study on feature selection in text categorization[C]//Proceedings of the Fourteenth International Conference on Machine Learning. Nashville, USA, 1997: 412420.

相似文献/References:

[1]尹林子,阳春华,桂卫华,等.规则分层约简算法[J].智能系统学报,2008,(06):492.
 YIN Lin-zi,YANG Chun-hua,GUI Wei-hua,et al.Hierarchical reduction of rules[J].CAAI Transactions on Intelligent Systems,2008,(03):492.
[2]毋 非,封化民,申晓晔.容错粗糙模型的事件检测研究[J].智能系统学报,2009,(02):112.
 WU Fei,FENG Hua-min,SHEN Xiao-ye.Research on event detection based on the tolerance rough set model[J].CAAI Transactions on Intelligent Systems,2009,(03):112.
[3]伞 冶,叶玉玲.粗糙集理论及其在智能系统中的应用[J].智能系统学报,2007,(02):40.
 SAN Ye,YE Yu-ling.Rough set theory and its application in the intelligent systems[J].CAAI Transactions on Intelligent Systems,2007,(03):40.
[4]王国胤,张清华,胡 军.粒计算研究综述[J].智能系统学报,2007,(06):8.
 WANG Guo-yin,ZHANG Qing-hua,HU Jun.An overview of granular computing[J].CAAI Transactions on Intelligent Systems,2007,(03):8.
[5]裴小兵,吴 涛,陆永忠.最小化决策规则集的计算方法[J].智能系统学报,2007,(06):65.
 PEI Xiao-bing,WU Tao,LU Yong-zhong.Calculating method for a minimal set of decision rules[J].CAAI Transactions on Intelligent Systems,2007,(03):65.
[6]张志飞,苗夺谦.基于粗糙集的文本分类特征选择算法[J].智能系统学报,2009,(05):453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
 ZHANG Zhi-fei,MIAO Duo-qian.Feature selection for text categorization based on rough set[J].CAAI Transactions on Intelligent Systems,2009,(03):453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
[7]周丹晨.采用粒计算的属性权重确定方法[J].智能系统学报,2015,(02):273.[doi:10.3969/j.issn.1673-4785.201312008]
 ZHOU Danchen.A method for ascertaining the weight of attributes based on granular computing[J].CAAI Transactions on Intelligent Systems,2015,(03):273.[doi:10.3969/j.issn.1673-4785.201312008]
[8]陈坚,陈健,邵毅明,等.粗糙集的过饱和多交叉口协同优化模型研究[J].智能系统学报,2015,(5):783.[doi:10.11992/tis.201406045]
 CHEN Jian,CHEN Jian,SHAO Yiming,et al.Collaborative optimization model for oversaturated multiple intersections based on the rough set theory[J].CAAI Transactions on Intelligent Systems,2015,(03):783.[doi:10.11992/tis.201406045]
[9]王金英,韩晓冰,王艳平.二型直觉模糊粗糙集[J].智能系统学报,2015,(6):943.[doi:10.11992/tis.201412013]
 WANG Jinying,HAN Xiaobing,WANG Yanping.Type-2 intuitionistic fuzzy rough sets[J].CAAI Transactions on Intelligent Systems,2015,(03):943.[doi:10.11992/tis.201412013]
[10]康向平,苗夺谦.一种基于概念格的集值信息系统中的知识获取方法[J].智能系统学报,2016,(3):287.[doi:10.11992/tis.201603055]
 KANG Xiangping,MIAO Duoqian.A knowledge acquisition method based on concept latticein set-valued information systems[J].CAAI Transactions on Intelligent Systems,2016,(03):287.[doi:10.11992/tis.201603055]
[11]马胜蓝,叶东毅.一种带禁忌搜索的粒子并行子群最小约简算法[J].智能系统学报,2011,(02):132.
 MA Shenglan,YE Dongyi.A minimum reduction algorithm based on parallel particle subswarm optimization with tabu search capability[J].CAAI Transactions on Intelligent Systems,2011,(03):132.

备注/Memo

备注/Memo:
收稿日期: 2010-08-28.
基金项目:国家“863”计划资助项目(2006AA01Z232,2009AA01Z212,2009AA01Z202);江苏省自然科学基金资助项目(BK2007603);江苏省高技术研究计划资助项目(BG2007045);江苏省重大科技支撑计划资助项目(BE2008134);江苏省科技成果转化专项基金资助项目(BA2007012).
通信作者:顾成杰.E-mail:jackiee.gu@gmail.com.
作者简介:
顾成杰,男,1985年生,博士研究生,主要研究方向为通信网与IP技术、P2P网络、网络流量识别与认知网络.
 张顺颐,男,1944年生,教授,博士生导师,江苏省通信与网络工程技术研究中心主任,中国通信学会IP应用与增值电信业务专委会主任,中国电子学会通信学分会副主任,“无锡国家传感网创新示范区”咨询专家委员会专家.主要研究方向为计算机网络通信、下一代网络与IP技术、互联网络监测与管理.近年来先后主持完成国家“863”计划项目5项,国家科技支撑计划项目1项,江苏省重大科技成果产业化项目1项,江苏省高技术研究计划重点项目2项.获得省部级科技进步奖8项,完成专利申请30余项,发表学术论文100余篇.
杜安源,男,1979年生,工程师,主要研究方向为移动通信与无线资源管理、3G标准的应用性研究、移动通信技术设计与实施等.
更新日期/Last Update: 2011-07-23