[1]顾军华,谢志坚,武君艳,等.基于图游走的并行协同过滤推荐算法[J].智能系统学报,2019,14(04):743-751.[doi:10.11992/tis.201806002]
 GU Junhua,XIE Zhijian,WU Junyan,et al.Parallel collaborative filtering recommendation algorithm based on graph walk[J].CAAI Transactions on Intelligent Systems,2019,14(04):743-751.[doi:10.11992/tis.201806002]
点击复制

基于图游走的并行协同过滤推荐算法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第14卷
期数:
2019年04期
页码:
743-751
栏目:
出版日期:
2019-07-02

文章信息/Info

Title:
Parallel collaborative filtering recommendation algorithm based on graph walk
作者:
顾军华12 谢志坚12 武君艳12 许馨匀12 张素琪3
1. 河北工业大学 人工智能与数据科学学院, 天津 300401;
2. 河北工业大学 河北省大数据计算重点实验室, 天津 300401;
3. 天津商业大学 信息工程学院, 天津 300134
Author(s):
GU Junhua12 XIE Zhijian12 WU Junyan12 XU Xinyun12 ZHANG Suqi3
1. School of Artificial Intelligence, Hebei University of Technology, Tianjin 300401, China;
2. Hebei Province Key Laboratory of Big Data Computing, Tianjin 300401, China;
3. School of Information Engineering, Tianjin University of Commerce, Tianjin 300134, China
关键词:
协同过滤推荐用户网络图游走相似度间接相似度并行Spark 平台
Keywords:
collaborative filteringrecommendationuser network mapwalksimilarityindirect similarityparallelSpark platform
分类号:
TP391
DOI:
10.11992/tis.201806002
摘要:
针对目前协同过滤推荐算法存在的数据稀疏性问题和可扩展性问题,本文进行了相关研究。针对稀疏性问题,在传统的皮尔逊相关相似度中引入交占比系数计算用户间直接相似度,该方法缓解了用户间共同评分项的占比问题;提出一种基于图游走的间接相似度计算方法,该方法根据用户间的直接相似度建立用户网络图,在用户网络图上通过游走计算用户间的间接相似度,并进行推荐。在Spark平台上实现本文方法的并行化,缓解了数据规模增加带来的可扩展性问题。实验结果表明:本文提出的算法在不同数据集上均取得了良好效果,有效地提高了推荐准确度,并且在分布式环境下具有良好的可扩展性。
Abstract:
This study aims to solve the problem of data sparsity and scalability of collaborative filtering recommendation algorithms. For the sparseness problem, the traditional Pearson correlation similarity is introduced to calculate the direct similarity between the users using the cross-ratio coefficients. This method alleviates the proportion of common scoring items among users. An indirect similarity calculation method based on graph walk is proposed in the paper. This method builds a user network map based on the direct similarity between users, calculates the indirect similarity between users by walking on the user network map, and makes recommendations. The parallelization of this method on the Spark platform mitigates the scalability problem caused by increase of the data size. Experimental results on Movielens dataset and IPTV dataset show that the proposed algorithm achieves good results on different datasets, effectively improves the recommendation accuracy rate, and has good scalability in a distributed environment.

参考文献/References:

[1] 黄立威,江碧涛,吕守业,等.基于深度学习的推荐系统研究综述[J].计算机学报,2018,41(7):1619-1647. HUANG Liwei, LIU Yanbo, LI Deyi. Deep learning based recommender systems[J].Chinese journal of computers. 2018,41(07):1619-1647.
[2] 孙光福, 吴乐, 刘淇, 等. 基于时序行为的协同过滤推荐算法[J]. 软件学报, 2013, 24(11):2721-2733 SUN Guangfu, WU Le, LIU Qi, et al. Recommendations based on collaborative filtering by exploiting sequential behaviors[J]. Journal of software, 2013, 24(11):2721-2733
[3] 许智宏, 蒋新宇, 董永峰, 等. 一种基于Spark的改进协同过滤算法研究[J]. 计算机应用与软件, 2017, 34(5):247-254, 278 XU Zhihong, JIANG Xinyu, DONG Yongfeng, et al. An improved collaborative filtering algorithm based on Spark[J]. Computer applications and software, 2017, 34(5):247-254, 278
[4] SUN Baoshan, DONG Lingyu. Dynamic model adaptive to user interest drift based on cluster and nearest neighbors[J]. IEEE access, 2017, 5:1682-1691.
[5] 彭宏伟, 靳远远, 吕晓强, 等. 一种基于矩阵分解的上下文感知POI推荐算法[J/OL]. 计算机学报:(2018-05-14)[2018-05-30]. http://kns.cnki.net/kcms/detail/11.1826.TP.20180512.2150.008.html. PENG Hongwei, JIN Yuanyuan, LÜ Xiaoqiang, et al. Context-aware POI recommendation based on matrix factorization[J]. Chinese Journal of Computers:(2018-05-14)[2018-05-30]. http://kns.cnki.net/kcms/detail/11.1826.TP.20180512.2150.008.html.
[6] WU Jibing, YU Lianfei, ZHANG Qun, et al. Multityped community discovery in time-evolving heterogeneous information networks based on tensor decomposition[J]. Complexity, 2018, 2018:9653404.
[7] MA Wenping, WU Yue, GONG Maoguo, et al. Local probabilistic matrix factorization for personal recommendation[C]//Proceedings of the 13th International Conference on Computational Intelligence and Security. Hong Kong, China, 2017:97-101.
[8] 杨志文, 刘波. 基于Hadoop平台协同过滤推荐算法[J]. 计算机系统应用, 2013, 22(7):108-112 YANG Zhiwen, LIU Bo. Hadoop-based collaborative filtering recommendation algorithm[J]. Computer systems and applications, 2013, 22(7):108-112
[9] LU F, HONG L, CHANGFENG L. The improvement and implementation of distributed item-based collaborative filtering algorithm on Hadoop[C]//Proceedings of the 34th Chinese Control Conference. Hangzhou, China, 2015:9078-9083.
[10] KUPISZ B, UNOLD O. Collaborative filtering recommendation algorithm based on Hadoop and Spark[C]//Proceedings of 2015 IEEE International Conference on Industrial Technology. Seville, Spain, 2015:1510-1514.
[11] 冷亚军, 陆青, 梁昌勇. 协同过滤推荐技术综述[J]. 模式识别与人工智能, 2014, 27(8):720-734 LENG Yajun, LU Qing, LIANG Changyong. Survey of recommendation based on collaborative filtering[J]. Pattern recognition and artificial intelligence, 2014, 27(8):720-734
[12] 范波, 程久军. 用户间多相似度协同过滤推荐算法[J]. 计算机科学, 2012, 39(1):23-26 FAN Bo, CHENG Jiujun. Collaborative filtering recommendation algorithm based on user’s multi-similarity[J]. Computer Science, 2012, 39(1):23-26
[13] 徐堃, 朱小柯, 荆晓远. 基于改进协同过滤的个性化web服务推荐方法研究[J]. 计算机技术与发展, 2018, 28(1):64-68 XU Kun, ZHU Xiaoke, JING Xiaoyuan. Research on personalized web service recommendation based on improved collaborative filtering[J]. Computer technology and development, 2018, 28(1):64-68
[14] WU Xiaokun, CHENG Bo, CHEN Junliang. Collaborative filtering service recommendation based on a novel similarity computation method[J]. IEEE transactions on services computing, 2017, 10(3):352-365.
[15] 肖春景, 夏克文, 乔永卫. 基于时序逆影响的随机游走推荐算法[J]. 计算机应用研究, 2018, 35(8):2304-2307 XIAO Chunjing, XIA Kewen, QIAO Yongwei. Temporal inverse influence based recommendation method by using random walk[J]. Application research of computers, 2018, 35(8):2304-2307
[16] 王鹤, 邬春学. 基于图结构和项目类型的协同过滤推荐算法[J]. 数据通信, 2016(5):44-47 WANG He, WU Chunxue. Collaborative filtering recommenddation algorithm based on graph structure and item type[J]. Data communications, 2016(5):44-47
[17] 宫秀文, 张佩云. 基于PageRank的社交网络影响最大化传播模型与算法研究[J]. 计算机科学, 2013, 40(S1):136-140 GONG Xiuwen, ZHANG Peiyun. Research on propagation model and algorithm for influence maximization in social network based on pageRank[J]. Computer science, 2013, 40(S1):136-140
[18] HU Yan, PENG Qimin, HU Xiaohui, et al. Time aware and data sparsity tolerant web service recommendation based on improved collaborative filtering[J]. IEEE transactions on services computing, 2015, 8(5):782-794.
[19] 黄筱云, 董国海, 常佳夫, 等. Level set函数快速步进重构并行算法的改进[J]. 哈尔滨工程大学学报, 2017, 38(6):836-842 HUANG Xiaoyun, DONG Guohuai, CHANG Jiafu, et al. Improvement of parallel fast marching method for reconstruction of level set function[J]. Journal of Harbin Engineering University, 2017, 38(6):836-842
[20] LIU Tiantian, FANG Zhiyi, ZHAO Chen, et al. Parallelization of a series of extreme learning machine algorithms based on spark[C]//Proceedings of the IEEE/ACIS 15th International Conference on Computer and Information Science. Okayama, Japan, 2016.
[21] 顾军华, 官磊, 张建, 等. 基于Hadoop的IPTV隐式评分模型[J]. 计算机应用, 2017, 37(11):3188-3193 GU Junhua, GUAN Lei, ZHANG Jian, et al. IPTV implicit scoring model based on Hadoop[J]. Journal of computer applications, 2017, 37(11):3188-3193

相似文献/References:

[1]沈苗,来天平,王素美,等.北京大学课程推荐引擎的设计和实现[J].智能系统学报,2015,10(03):369.[doi:10.3969/j.issn.1673-4785.201409045]
 SHEN Miao,LAI Tianping,WANG Sumei,et al.Design and implementation of the course recommendation engine in Peking University[J].CAAI Transactions on Intelligent Systems,2015,10(04):369.[doi:10.3969/j.issn.1673-4785.201409045]
[2]王大玲,冯时,张一飞,等.社会媒体多模态、多层次资源推荐技术研究[J].智能系统学报,2014,9(03):265.[doi:10.3969/j.issn.1673-4785.201403068]
 WANG Daling,FENG Shi,ZHANG Yifei,et al.Study on the recommendations of multi-modal and multi-level resources in social media[J].CAAI Transactions on Intelligent Systems,2014,9(04):265.[doi:10.3969/j.issn.1673-4785.201403068]
[3]马钰,张岩,王宏志,等.面对智能导诊的个性化推荐算法[J].智能系统学报,2018,13(03):352.[doi:10.11992/tis.201711036]
 MA Yu,ZHANG Yan,WANG Hongzhi,et al.A personalized recommendation algorithm for intelligent guidance[J].CAAI Transactions on Intelligent Systems,2018,13(04):352.[doi:10.11992/tis.201711036]
[4]陈君同,古天龙,常亮,等.融合协同过滤与用户偏好的旅游组推荐方法[J].智能系统学报,2018,13(06):999.[doi:10.11992/tis.201802011]
 CHEN Juntong,GU Tianlong,CHANG Liang,et al.A tourist group recommendation method combining collaborative filtering and user preferences[J].CAAI Transactions on Intelligent Systems,2018,13(04):999.[doi:10.11992/tis.201802011]
[5]涂飞.多特征融合的兴趣点推荐算法[J].智能系统学报,2019,14(04):779.[doi:10.11992/tis.201801048]
 TU Fei.A point of interest recommendation algorithm based on multi-feature fusion[J].CAAI Transactions on Intelligent Systems,2019,14(04):779.[doi:10.11992/tis.201801048]
[6]李慧,马小平,胡云,等.融合上下文信息的社会网络推荐系统[J].智能系统学报,2015,10(02):293.[doi:10.3969/j.issn.1673-4785.201406017]
 LI Hui,MA Xiaoping,HU Yun,et al.Social network recommendaton system mixing contex information[J].CAAI Transactions on Intelligent Systems,2015,10(04):293.[doi:10.3969/j.issn.1673-4785.201406017]

备注/Memo

备注/Memo:
收稿日期:2018-06-01。
基金项目:河北省科技计划项目(17210305D);天津市科技计划项目(16ZXHLSF0023);天津市自然科学基金项目(15JCQNJC00600).
作者简介:顾军华,男,1966年生,教授,博士生导师,CCF会员,中国离散数学学会常务理事,河北省计算机学会副理事长。主要研究方向为数据挖掘、智能信息处理等。完成科研项目30余项,发表学术论文50余篇;谢志坚,男,1995年生,硕士研究生,主要研究方向为数据挖掘与机器学习;武君艳,女,1994年生,硕士研究生,主要研究方向为数据挖掘与计算机仿真。
通讯作者:张素琪.E-mail:zhangsuqie@163.com
更新日期/Last Update: 2019-08-25