[1]王健宗,肖京,朱星华,等.联邦推荐系统的协同过滤冷启动解决方法[J].智能系统学报,2021,16(1):178-185.[doi:10.11992/tis.202009032]
 WANG Jianzong,XIAO Jing,ZHU Xinghua,et al.Cold starts in collaborative filtering for federated recommender systems[J].CAAI Transactions on Intelligent Systems,2021,16(1):178-185.[doi:10.11992/tis.202009032]
点击复制

联邦推荐系统的协同过滤冷启动解决方法

参考文献/References:
[1] ALBRECHT J P. How the GDPR will change the world[J]. European data protection law review, 2016, 2(3):287-289.
[2] SHI E, CHAN T H H, RIEFFEL E, et al. Distributed private data analysis:lower bounds and practical constructions[J]. ACM transactions on algorithms, 2017, 13(4):50.
[3] KIM S, KIM J, KOO D, et al. Efficient privacy-preserving matrix factorization via fully homomorphic encryption:extended Abstract[C]//Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. Xi’an, China, 2016:617-628.
[4] SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th International Conference on World Wide Web. Hong Kong, China, 2001:285-295.
[5] HERLOCKER J L, KONSTAN J A, BORCHERS A, et al. An algorithmic framework for performing collaborative filtering[C]//Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. California, Berkeley, USA, 1999:230-237.
[6] KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8):30-37.
[7] RENNIE J D M, SREBRO N. Fast maximum margin matrix factorization for collaborative prediction[C]//Proceedings of the 22nd International Conference on Machine Learning. New York, USA, 2005:713-719.
[8] KOBSA A. Privacy-enhanced web personalization[M]. BRUSILOVSKY P, KOBSA A, NEJDL W. The Adaptive Web:Methods and Strategies of Web Personalization. Berlin:Springer, 2007:628-670.
[9] JECKMANS A, TANG Qiang, HARTEL P. Privacy-preserving collaborative filtering based on horizontally partitioned dataset[C]//Proceedings of 2012 International Conference on Collaboration Technologies and Systems. Denver, USA, 2012.
[10] QIAO Yu, LI Lingjuan. Research on resolving strategies of the cold start problem of recommendation system[J]. Computer technology and development, 2018, 28(2):83-87.
[11] YANG Qiang, LIU Yang, CHEN Tianjian, et al. Federated machine learning:concept and applications[J]. ACM transactions on intelligent systems and technology, 2019, 10(2):12.
[12] 乔雨, 李玲娟. 推荐系统冷启动问题解决策略研究[J]. 计算机技术与发展, 2018, 28(2):83-87
QIAO Yu, LI Lingjuan. Research on solution of solving cold start problem in recommender systems[J]. Computer technology and development, 2018, 28(2):83-87
[13] ZHAO Lingchen, NI Lihao, HU Shengshan, et al. InPrivate digging:enabling tree-based distributed data mining with differential privacy[C]//Proceedings of 2018 IEEE Conference on Computer Communications. Honolulu, USA, 2018:2087-2095.
[14] SMITH V, CHIANG C K, SANJABI M, et al. Federated multi-task learning[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, USA, 2017:4427-4437.
[15] HSU C C, YEH M Y, LIN Shude. A general framework for implicit and explicit social recommendation[J]. IEEE transactions on knowledge and data engineering, 2018, 30(12):2228-2241.
[16] CHEN Shulong, PENG Yuxing. Matrix factorization for recommendation with explicit and implicit feedback[J]. Knowledge-based systems, 2018, 158:109-117.
[17] JAWAHEER G, SZOMSZOR M, KOSTKOVA P. Comparison of implicit and explicit feedback from an online music recommendation service[C]//Proceedings of the 1st International Workshop on Information Heterogeneity and Fusion in Recommender Systems. New York, USA, 2010:47-51.
[18] PAZZANI M J, BILLSUS D. Content-based recommendation systems[M]. BRUSILOVSKY P, KOBSA A, NEJDL W. The Adaptive Web:Methods and Strategies of Web Personalization. Berlin, Heidelberg, Germany:Springer, 2007:325-341.
[19] BURKE R. Knowledge-based recommender systems[J]. Encyclopedia of library and information systems, 2000, 69(S32):175-186.
[20] WANG Jizhe, HUANG Pipei, ZHAO Huan, et al. Billion-scale commodity embedding for E-commerce recommendation in Alibaba[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London, United Kingdom, 2018:839-848.
[21] HWANGBO H, KIM Y S, CHA K J. Recommendation system development for fashion retail E-commerce[J]. Electronic commerce research and applications, 2018, 28:94-101.
[22] HERLOCKER J L, KONSTAN J A, RIEDL J. Explaining collaborative filtering recommendations[C]//Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work. Pennsylvania, Philadelphia, USA, 2000:241-250.
[23] SUBRAMANIYASWAMY V, LOGESH R, CHANDRASHEKHAR M, et al. A personalised movie recommendation system based on collaborative filtering[J]. International journal of high performance computing and networking, 2017, 10(1/2):54-63.
[24] ZHENG E, KONDO G Y, ZILORA S, et al. Tag-aware dynamic music recommendation[J]. Expert systems with applications, 2018, 106:244-251.
[25] ZHENG Guanjie, ZHANG Fuzheng, ZHENG Zihan, et al. DRN:a deep reinforcement learning framework for news recommendation[C]//Proceedings of the 2018 World Wide Web Conference. Lyon, France, 2018:167-176.
[26] COLOMO-PALACIOS R, GARCíA-PE?ALVO F J, STANTCHEV V, et al. Towards a social and context-aware mobile recommendation system for tourism[J]. Pervasive and mobile computing, 2017, 38:505-515.
[27] GENTRY C. A fully homomorphic encryption scheme[D]. Palo Alto:Stanford University, 2009.
[28] CANNY J. Collaborative filtering with privacy via factor analysis[C]//Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Tampere, Finland, 2002:238-245.
[29] CHEN Chaochao, ZHOU Jun, WU Bingzhe, et al. Practical privacy preserving POI recommendation[J]. ACM transactions on intelligent systems and technology, 2020, 11(5):52.
[30] CHEN Chaochao, LIU Ziqi, ZHAO Peilin, et al. Privacy preserving point-of-interest recommendation using decentralized matrix factorization[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. New Orleans, Louisiana, USA, 2018:257-264.
[31] ERKIN Z, BEYE M, VEUGEN T, et al. Efficiently computing private recommendations[C]//Proceedings of 2011 IEEE International Conference on Acoustics, Speech and Signal Processing. Prague, Czech Republic, 2011:5864-5867.
[32] KATARYA R, VERMA O P. Effective collaborative movie recommender system using asymmetric user similarity and matrix factorization[C]//Proceedings of 2016 International Conference on Computing, Communication and Automation. Noida, India, 2016:71-75.
[33] HERLOCKER J L, KONSTAN J A, BORCHERS A, et al. An algorithmic framework for performing collaborative filtering[C]//Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. California, Berkeley, USA, 1999:230-237.
[34] GASCON A, SCHOPPMANN P, BALLE B, et al. Secure linear regression on vertically partitioned datasets[J]. IACR cryptology ePrint archive, 2016, 2016:892.
[35] HARPER F M, KONSTAN J A. The movielens datasets:history and context[J]. ACM transactions on interactive intelligent systems, 2015, 5(4):19.
[36] KOREN Y. Factorization meets the neighborhood:a multifaceted collaborative filtering model[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Nevada, Las Vegas, USA, 2008:426-434.
[37] NIKOLAENKO V, WEINSBERG U, IOANNIDIS S, et al. Privacy-preserving ridge regression on hundreds of millions of records[C]//Proceedings of 2013 IEEE Symposium on Security and Privacy. Berkeley, USA, 2013:334-348.
相似文献/References:
[1]吉根林,姚? 瑶.一种分布式隐私保护的密度聚类算法[J].智能系统学报,2009,4(2):137.
 JI Gen-lin,YAO Yao.Densitybased privacy preserving distributed clustering algorithm[J].CAAI Transactions on Intelligent Systems,2009,4():137.
[2]张兴,陈昊.差分隐私的高维数据发布研究综述[J].智能系统学报,2021,16(6):989.[doi:10.11992/tis.202104023]
 ZHANG Xing,CHEN Hao.A research review of high-dimensional data publishing based on a differential privacy model[J].CAAI Transactions on Intelligent Systems,2021,16():989.[doi:10.11992/tis.202104023]
[3]窦勇敢,袁晓彤.基于隐式随机梯度下降优化的联邦学习[J].智能系统学报,2022,17(3):488.[doi:10.11992/tis.202106029]
 DOU Yonggan,YUAN Xiaotong.Federated learning with implicit stochastic gradient descent optimization[J].CAAI Transactions on Intelligent Systems,2022,17():488.[doi:10.11992/tis.202106029]
[4]陈涛,谢在鹏,屈志昊.基于动态阈值增强原型网络的联邦半监督学习模型[J].智能系统学报,2024,19(3):534.[doi:10.11992/tis.202311015]
 CHEN Tao,XIE Zaipeng,QU Zhihao.Federated semi-supervised learning model based on dynamic threshold enhanced prototype network[J].CAAI Transactions on Intelligent Systems,2024,19():534.[doi:10.11992/tis.202311015]
[5]陈志鹏,张勇,高海荣,等.隐私保护下融合联邦学习和LSTM的少数据综合能源多元负荷预测[J].智能系统学报,2024,19(3):565.[doi:10.11992/tis.202208049]
 CHEN Zhipeng,ZHANG Yong,GAO Hairong,et al.Integrated energy multivariate load forecasting combining federated learning with LSTM in privacy-protected and low-data environments[J].CAAI Transactions on Intelligent Systems,2024,19():565.[doi:10.11992/tis.202208049]

备注/Memo

收稿日期:2020-09-23。
基金项目:国家重点研发计划“云计算和大数据”重点专项(2018YFB1003503);国家重点研发计划“高性能计算”重点专项(2018YFB0204400);国家重点研发计划“现代服务业共性关键技术研发及应用示范”专项(2017YFB1401202)
作者简介:王健宗,高级工程师,博士,主要研究方向为联邦学习算法、金融智能平台。主持国家重点研发计划基金项目3项、校企联合课题2项,授权发明专利100余项。发表学术论文50余篇,出版著作3部;肖京,教授级高级工程师,博士,主要研究方向为人工智能与大数据分析挖掘。国际授权专利101项,授权国内发明专利109项。2019 年吴文俊人工智能科学技术奖“杰出贡献奖”获得者,发表学术论文130余篇;朱星华,博士研究生,主要研究方向为联邦学习、机器视觉算法
通讯作者:王健宗. E-mail:jzwang@188.com

更新日期/Last Update: 2021-02-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com