[1]邓廷权,王强.半监督类保持局部线性嵌入方法[J].智能系统学报,2021,16(1):98-107.[doi:10.11992/tis.202003007]
 DENG Tingquan,WANG Qiang.Semi-supervised class preserving locally linear embedding[J].CAAI Transactions on Intelligent Systems,2021,16(1):98-107.[doi:10.11992/tis.202003007]
点击复制

半监督类保持局部线性嵌入方法

参考文献/References:
[1] LIU Feng, ZHANG Weijie, GU Suicheng. Local linear laplacian eigenmaps:a direct extension of LLE[J]. Pattern recognition letters, 2016, 75:30-35.
[2] JIANG Bo, DING C, LUO Bin. Robust data representation using locally linear embedding guided PCA[J]. Neurocomputing, 2018, 275:523-532.
[3] WANG Qian, WANG Weiguo, NIAN Rui, et al. Manifold learning in local tangent space via extreme learning machine[J]. Neurocomputing, 2016, 174:18-30.
[4] TANG Z, LAO H. Robust image hashing via DCT and LLE[J]. Computers and security, 2016, 62:133-148.
[5] ZHANG Yan, ZHANG Zhao, QIN Jie, et al. Semi-supervised local multi-manifold Isomap by linear embedding for feature extraction[J]. Pattern recognition, 2018, 76:622-678.
[6] LIU Zhonghua, WANG Xiaohong, PU Jiexin, et a. Nonnegative low-rank representation based manifold embedding for semi-supervised learning[J]. Knowledge-based systems, 2017, 136:121-129.
[7] CHEN Lin, YANG Meng. Semi-supervised dictionary learning with label propagation for image classification[J]. Computational visual media, 2017, 3(1):83-94.
[8] MIKALSEN K O, SOGUERO-RUIZ C, BIANCHI F M, et al. Noisy multi-label semi-supervised dimensionality reduction[J]. Pattern recognition, 2019, 90:257-270.
[9] PARK S H, KIM S B. Active semi-supervised learning with multiple complementary information[J]. Expert systems with applications, 2019, 126:30-40.
[10] ZHENG Feng, SONG Zhan, SHAO Ling, et al. A semi-supervised approach for dimensionality reduction with distributional similarity[J]. Neurocomputing, 2013, 103:210-221.
[11] SUN Shiliang, HUSSAIN Z, SHAWE-TAYLOR J. Manifold-preserving graph reduction for sparse semi-supervised learning[J]. Neurocomputing, 2014, 124:13-21.
[12] KIM K. An improved semi-supervised dimensionality reduction using feature weighting:application to sentiment analysis[J]. Expert systems with applications, 2018, 109:49-65.
[13] ROWEIS S T, SAUL L J. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500):2323-2326.
[14] LANGLEY P, PAZZANI M J, FISHER D H. Concept formation:knowledge and experience in unsupervised learning[M]. San Mateo:Morgan Kaufmann Publishers, 1991.
[15] YANG Bo, XIANG Ming, ZHANG Yupei. Multi-manifold discriminant isomap for visualization and classification[J]. Pattern recognition, 2016:215-230.
[16] 张长帅, 周大可, 杨欣. 一种基于核的半监督局部线性嵌入方法[J]. 计算机工程, 2011, 37(20):157-159
ZHANG Changshuai, ZHOU Dake, YANG Xin. Method of kernel-based semi-supervised local linear embedding[J]. Computer engineering, 2011, 37(20):157-159
[17] KIM K, LEE J. Sentiment visualization and classification via semi-supervised nonlinear dimensionality reduction[J]. Pattern recognition, 2014, 47(2):758-768.
[18] COSTA J A, HERO III A O. Classification constrained dimensionality reduction[C]//Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. Philadelphia, USA, 2005:1077-1080.
[19] MARCILLA A, REYES-LABARTA J A, OLAYA M M. Should we trust all the published LLE correlation parameters in phase equilibria? Necessity of their assessment prior to publication[J]. Fluid phase equilibria, 2017, 433:243-252.
[20] BEZDEK J C. Pattern recognition with fuzzy objective function algorithms[M]. New York:Plenum, 1981:35-36.
相似文献/References:
[1]徐 蓉,姜 峰,姚鸿勋.流形学习概述[J].智能系统学报,2006,1(1):44.
 XU Rong,JIANG Feng,YAO Hong-xun.Overview of manifold learning[J].CAAI Transactions on Intelligent Systems,2006,1(1):44.
[2]谢朝霞,穆志纯,谢建军.基于LLE的多姿态人耳识别[J].智能系统学报,2008,3(4):321.
 XIE Zhao-xia,MU Zhi-chun,XIE J ian-jun.Multi-pose ear recogn ition based on locally linear embedding[J].CAAI Transactions on Intelligent Systems,2008,3(1):321.
[3]文贵华,江丽君,文 军.局部测地距离估计的Hessian局部线性嵌入[J].智能系统学报,2008,3(5):429.
 WEN Gui-hua,J IANG L i-jun,WEN Jun.Using locally estimated geodesic distances to improve Hessian local linear embedding[J].CAAI Transactions on Intelligent Systems,2008,3(1):429.
[4]刘? 琚,乔建苹.基于学习的超分辨率重建技术[J].智能系统学报,2009,4(3):199.
 LIU Ju,QIAO Jian-ping.Learningbased superresolution reconstruction[J].CAAI Transactions on Intelligent Systems,2009,4(1):199.
[5]谈超,关佶红,周水庚.增量与演化流形学习综述[J].智能系统学报,2012,7(5):377.
 TAN Chao,GUAN Jihong,ZHOU Shuigeng.Incremental and evolutionary manifold learning: a survey[J].CAAI Transactions on Intelligent Systems,2012,7(1):377.
[6]练浩,曾宪华,李淑芳.有监督全局流形排序的图像检索算法[J].智能系统学报,2014,9(1):92.[doi:10.3969/j.issn.1673-4785.201303021]
 LIAN Hao,ZENG Xianhua,LI Shufang.Supervised global manifold ranking based image retrieval algorithm[J].CAAI Transactions on Intelligent Systems,2014,9(1):92.[doi:10.3969/j.issn.1673-4785.201303021]
[7]张钢,谢晓珊,黄英,等.面向大数据流的半监督在线多核学习算法[J].智能系统学报,2014,9(3):355.[doi:10.3969/j.issn.1673-4785.201403067]
 ZHANG Gang,XIE Xiaoshan,HUANG Ying,et al.An online multi-kernel learning algorithm for big data[J].CAAI Transactions on Intelligent Systems,2014,9(1):355.[doi:10.3969/j.issn.1673-4785.201403067]
[8]程旸,王士同.基于局部保留投影的多可选聚类发掘算法[J].智能系统学报,2016,11(5):600.[doi:10.11992/tis.201508022]
 CHENG Yang,WANG Shitong.A multiple alternative clusterings mining algorithm using locality preserving projections[J].CAAI Transactions on Intelligent Systems,2016,11(1):600.[doi:10.11992/tis.201508022]
[9]徐慧敏,陈秀宏.图正则化稀疏判别非负矩阵分解[J].智能系统学报,2019,14(6):1217.[doi:10.11992/tis.201811021]
 XU Huimin,CHEN Xiuhong.Graph-regularized, sparse discriminant, non-negative matrix factorization[J].CAAI Transactions on Intelligent Systems,2019,14(1):1217.[doi:10.11992/tis.201811021]
[10]余沁茹,卢桂馥,李华.自适应图正则化的低秩非负矩阵分解算法[J].智能系统学报,2022,17(2):325.[doi:10.11992/tis.202102007]
 YU Qinru,LU Guifu,LI Hua.Nonnegative low-rank matrix factorization with adaptive graph neighbors[J].CAAI Transactions on Intelligent Systems,2022,17(1):325.[doi:10.11992/tis.202102007]

备注/Memo

收稿日期:2020-03-04。
基金项目:国家自然科学基金项目(11471001,61872104)
作者简介:邓廷权,教授,博士生导师,中国人工智能学会粒计算与知识发现专业委员会委员、黑龙江省工业与应用数学学会副理事长,主要研究方向为不确定性信息分析理论与方法、机器学习与数据挖掘、模式识别与人工智能。主持和参与国家自然科学基金面上项目各2项、主持多项省部级、国家重点实验室基金和横向项目。发表学术论文100余篇;王强,硕士研究生,主要研究方向为数据分析理论与方法.
通讯作者:王强. E-mail: 1005834631@qq.com

更新日期/Last Update: 2021-02-25
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134