[1]徐 蓉,姜 峰,姚鸿勋.流形学习概述[J].智能系统学报,2006,1(1):44-51.
 XU Rong,JIANG Feng,YAO Hong-xun.Overview of manifold learning[J].CAAI Transactions on Intelligent Systems,2006,1(1):44-51.
点击复制

流形学习概述

参考文献/References:
[1] HYVRINEN A. Survey on independent component analysis[J]. Neural Computi ng Surveys , 1999,2(4): 94-128.
[2] TURK M, PENTLAND A. Eigenfaces for recognition[J]. Journal of Cognitive Neuroscience , 1991,3(1):71-86.
[3] GONZALEZ R C, WOODS R E. Digital image processing:2nd ed[M]. Beijing: Publishing House of Electronics Industry, 2003.
[4] SEUNG H S, LEE D D. The manifold ways of perception[J]. Science, 2000,290(5500):2268-2269.
[5] TENENBAUM J, SILVA D D, LANGFORD J. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319-232 3.
[6] ROWEIS S, SAUL L. Nonlinear dimensionality reduction by locally li near embedding[J]. Science, 2000, 290(5500): 2323-2326.
[7] 王守觉. 仿生模式识别(拓扑模式识别)——一种模式识别新模型的理论与应用[J ]. 电子学报, 2002, 30(10):1417-1420.
WANG Shoujue. Bionic(Topological) pattern recognition—a new model of pattern r ecognition theory and its applications[J]. Acta Electronica Sinica, 2002,30(10 ): 1417-1420.
[8] 张军平,曹存根. 神经网络及其应用[M]. 北京: 清华大学出版社, 2 004.
ZHANG Junping, CAO Cungen. Neural network and applications[M]. Beijing: Tsi nghua University Press, 2004.
[9] ZHANG C S, WANG J, ZHAO N Y, ZHANG D. Reconstruction and analysis of multip ose face images based on nonlinear dimensionality reduction[J]. Pattern Recogn ition, 2004,37(1): 325-336.
[10] 詹德川, 周志华. 基于集成的流形学习可视化[J]. 计算机研究与发展, 2005, 4 2 (9): 1533-1537.
ZHAN Dechuan, ZHOU Zhihua. Ensemblebased manifold learning for visuali zatio n[J]. Journal of Computer Research and Development, 2005, 42(9): 1533-1537.
[11] 赵连伟, 罗四维, 赵艳敞,等. 高维数据的低维嵌入及嵌入维数研究[J]. 软件学报, 2005, 16(8): 1423-1430.
 ZHAO Lianwei, LUO Siwei, ZHAO Yanchang, et al. Study on the lowdime nsi onal embedding and the embedding dimensionality of manifold of highdimensional data[J]. Journal of Software, 2005, 16(8): 1423-1430.
[12] 何    力, 张军平, 周志平. 基于放大因子和延伸方向研究流形学习算法[J]. 计算机学报, 2005, 28(12): 2000-2009.
 HE Li, ZHANG Junping, ZHOU Zhiping. Investigating manifold learning algori thms based on magnification factors and principal spread directions[J]. Chinese Jo urnal of Computers, 2005, 28(12): 2000-2009.
[13] BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality reducti on and data representation[J]. Neural Computation, 2003, 15(6): 1373-1396.
[14] ZHANG Z Y, ZHA H Y. Principal manifolds and nonlinear dimensionali ty reduc tion via tangent space alignment[J]. SIAM Journal of Scientific Computing, 200 5, 26(1): 313-338.
[15] SIMARD P Y, LECUN Y A, DENKER J S. Efficient pattern recognition using a n ew transformation distance[J]. Advances in Neural Information Processing Syste ms, 1993(5): 50-58.
[16] ZHANG J P, LI S Z, WANG J. Intelligen t Mul timedia Processing with Soft Computing[C]. Heidelberg: Springer-Verlag, 2004. 
[17] HASTIE T, STUETZLE W. Principla Curves[J]. Journal of the Ame rican Statistical Association, 1988, 84(406): 502-516.
[18] K′EGL B, KRZYZAK A, LINDER T, ZEGER K. Learning and design of p rincipal cu rves[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(3): 281-297.
[19] BISHOP C M, SEVENSEN M, WILLIAMS C K I. GTM: The generative top ographic mapping[J]. Neural Computation, 1998,10(1): 215-234.
[20] CHANG K, GHOSH J. A unified model for probabilistic principal s urfaces[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(1) : 22-41.
[21] SMOLA A J, MIKA S. Regularized principal manifolds[A]. In Computati onal Learning Theory: 4th European Conference[C]. New York: SpringerVerlag, 1999.
[22] HINTON G, ROWEIS S. Stochastic neighbor embedding[A]. Neur al Informatio n Proceeding Systems: Natural and Synthetic[C]. Vancouver,Canada,2002.
[23] BRAND M, MERL. Charting a manifold[A]. Neural Information Procee ding Systems: Natural and Synthetic[C]. Vancouver,Canada, 2002.
[24] BORG I, GROENEN P. Modern multidimensional scaling: theory and app lication [M]. NewYork: SpringerVerlag, 1997.
[25] MIN W L, LU L, HE X F. Locality pursuit embedding[J]. Pattern Recognit ion, 2004, 37(4): 781-788.
[26] 杨    剑, 李伏欣, 王    珏. 一种改进的局部切空间排列算法[J]. 软件学报, 200 5, 16(9): 1584-1589.
YANG Jian, LI Fuxin, WANG Jue. A better scaled local tangent space align ment algorithm[J]. Journal of Software, 2005,16(9): 1584-1589.
[27] 翁时锋, 张长水, 张学工. 非线性降维在高维医学数据处理中的应用[J]. 清华大学学报(自然科学版), 2004,44(4): 485-488.
WENG Shifeng, ZHANG Changshui, ZHANG Xuegong. Nonlinear dimensionality red uct ion in the analysis of high dimensional medical data[J]. Journal of Tsinghua University(Sci & Tech), 2004, 44(4): 485-488.
相似文献/References:
[1]谢朝霞,穆志纯,谢建军.基于LLE的多姿态人耳识别[J].智能系统学报,2008,3(4):321.
 XIE Zhao-xia,MU Zhi-chun,XIE J ian-jun.Multi-pose ear recogn ition based on locally linear embedding[J].CAAI Transactions on Intelligent Systems,2008,3():321.
[2]文贵华,江丽君,文 军.局部测地距离估计的Hessian局部线性嵌入[J].智能系统学报,2008,3(5):429.
 WEN Gui-hua,J IANG L i-jun,WEN Jun.Using locally estimated geodesic distances to improve Hessian local linear embedding[J].CAAI Transactions on Intelligent Systems,2008,3():429.
[3]刘? 琚,乔建苹.基于学习的超分辨率重建技术[J].智能系统学报,2009,4(3):199.
 LIU Ju,QIAO Jian-ping.Learningbased superresolution reconstruction[J].CAAI Transactions on Intelligent Systems,2009,4():199.
[4]谈超,关佶红,周水庚.增量与演化流形学习综述[J].智能系统学报,2012,7(5):377.
 TAN Chao,GUAN Jihong,ZHOU Shuigeng.Incremental and evolutionary manifold learning: a survey[J].CAAI Transactions on Intelligent Systems,2012,7():377.
[5]练浩,曾宪华,李淑芳.有监督全局流形排序的图像检索算法[J].智能系统学报,2014,9(1):92.[doi:10.3969/j.issn.1673-4785.201303021]
 LIAN Hao,ZENG Xianhua,LI Shufang.Supervised global manifold ranking based image retrieval algorithm[J].CAAI Transactions on Intelligent Systems,2014,9():92.[doi:10.3969/j.issn.1673-4785.201303021]
[6]张钢,谢晓珊,黄英,等.面向大数据流的半监督在线多核学习算法[J].智能系统学报,2014,9(3):355.[doi:10.3969/j.issn.1673-4785.201403067]
 ZHANG Gang,XIE Xiaoshan,HUANG Ying,et al.An online multi-kernel learning algorithm for big data[J].CAAI Transactions on Intelligent Systems,2014,9():355.[doi:10.3969/j.issn.1673-4785.201403067]
[7]程旸,王士同.基于局部保留投影的多可选聚类发掘算法[J].智能系统学报,2016,11(5):600.[doi:10.11992/tis.201508022]
 CHENG Yang,WANG Shitong.A multiple alternative clusterings mining algorithm using locality preserving projections[J].CAAI Transactions on Intelligent Systems,2016,11():600.[doi:10.11992/tis.201508022]
[8]杨文元.多标记学习自编码网络无监督维数约简[J].智能系统学报,2018,13(5):808.[doi:10.11992/tis.201804051]
 YANG Wenyuan.Unsupervised dimensionality reduction of multi-label learning via autoencoder networks[J].CAAI Transactions on Intelligent Systems,2018,13():808.[doi:10.11992/tis.201804051]
[9]朱换荣,郑智超,孙怀江.面向局部线性回归分类器的判别分析方法[J].智能系统学报,2019,14(5):959.[doi:10.11992/tis.201808007]
 ZHU Huanrong,ZHENG Zhichao,SUN Huaijiang.Locality-regularized linear regression classification-based discriminant analysis[J].CAAI Transactions on Intelligent Systems,2019,14():959.[doi:10.11992/tis.201808007]
[10]徐慧敏,陈秀宏.图正则化稀疏判别非负矩阵分解[J].智能系统学报,2019,14(6):1217.[doi:10.11992/tis.201811021]
 XU Huimin,CHEN Xiuhong.Graph-regularized, sparse discriminant, non-negative matrix factorization[J].CAAI Transactions on Intelligent Systems,2019,14():1217.[doi:10.11992/tis.201811021]

备注/Memo

收稿日期:2006-03-01.
基金项目:国家自然科学基金资助项目(60332010,60533030).
作者简介:
徐     蓉,女,1982年生,哈尔滨工业大学在读硕士研究生,主要研究方向为模式识别、机器学习、手语识别.
姜     峰,在职博士研究生,讲师.主要研究方向为模式识别、机器学习、自然人机交互技术、多媒体技术、数字版权保护等.
姚鸿勋,教授,博导.主要研究方向为自然人机交互技术、多媒体技术、图像处理及模式识别、信息隐藏与检测、数字版权保护、生物特征识别技术等.已发表学术论文60余篇,其中被SCI、EI、 ISTP检索收录30余篇,另获发明专利1项.

更新日期/Last Update: 2009-04-07
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134