[1]刘 琚,乔建苹.基于学习的超分辨率重建技术[J].智能系统学报,2009,(03):199-207.
 LIU Ju,QIAO Jian-ping.Learningbased superresolution reconstruction[J].CAAI Transactions on Intelligent Systems,2009,(03):199-207.
点击复制

基于学习的超分辨率重建技术(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
期数:
2009年03期
页码:
199-207
栏目:
出版日期:
2009-06-25

文章信息/Info

Title:
Learningbased superresolution reconstruction
文章编号:
1673-4785(2009)03-0199-09
作者:
刘  琚1 乔建苹2
1.山东大学 信息科学与工程学院,山东 济南 250100;
2.山东师范大学 传播学院,山东 济南 250014
Author(s):
LIU Ju1 QIAO Jian-ping2
1. School of Information Science and Engineering, Shandong University, Ji’nan 250100, China;
2. School of Communication, Shandong Normal University, Ji’nan 250014, China
关键词:
超分辨率重建支持向量机流形学习独立分量分析
Keywords:
superresolution reconstruction support vector machines manifold learning independent component analysis
分类号:
TP391.4
文献标志码:
A
摘要:
超分辨率重建是图像处理和计算机图形学领域的热点研究问题.主要介绍基于学习的超分辨率重建技术的基本理论和研究进展,包括基于支撑向量机、流形学习和独立分量分析等几种典型的基于学习的超分辨率重建技术以及作者的最新研究结果,最后对未来可能的发展做了展望.
Abstract:
Superresolution reconstruction is an important problem in image processing and computer graphics. This paper introduces key mathematical principles and the latest progress in learningbased superresolution. Several typical artificial intelligent techniques, such as support vector machines, manifold learning, independent component analysis and so on, were analyzed. Finally, areas meriting further investigation were outlined.

参考文献/References:

[1]HARRIS J L. Diffraction and resolving power[J]. Journal of the Optical Society of America, 1964, 54(7): 931936.
[2]GOODMAN J W. Introduction to Fourier optics[M]. New York: McGrawHill, 1968.
 [3]BROWN H A. Effect of truncation on image enhancement by prolate spheroidal function[J]. Journal of the Optical Society of America, 1969, 59: 228229.
 [4]JAIN A K. Fundamentals of digital image processing[M]. Englewood Cliffs,USA: PrenticeHall, 1989.
 [5]WADAKS S, SATO T. Superresolution in incoherent imaging system[J]. Journal of the Optical Society of America, 1975, 65(3): 354355.
 [6]TSAI R Y, HUANG T S. Multipleframe image restoration and registration[C]//Advances in Computer Vision and Image Processing. Greenwich, USA: JAI Press Inc, 1984: 317339.
[7]BAKER S, KANADE T. Hallucinating faces[R]. Pittsburgh,USA:The Robotics Institute, Carnegie Mellon University, 1999.
 [8]BAKER S, KANADE T. Hallucinating faces[C]//IEEE Int Conf on Automatic Face and Gesture Recognition. Grenoble, France, 2000: 8388
[9]BAKER S, KANADE T. Limits on superresolution and how to break them[C]//IEEE Conf on Computer Vision and Pattern Recognition. Hilton Head Island, USA, 2000, 2: 372379.
[10]BAKER S, KANADE T. Superresolution: limits and beyond[M]//CHAUDHURI S. Superresolution imaging. Dordrecht,The Netherlands:Kluwer Academic Press, 2001: 243276.
 [11]BAKER S, KANADE T. Superresolution: reconstruction or recognition[C]//IEEEEURASIP Workshop on Nonlinear Signal and Image Processing. Baltimore, USA, 2001:215219.
[12]BAKER S, KANADE T. Limits on superresolution and how to break them[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(9): 11671183.
[13]FREEMAN W T, JONES T R, PASZTOR E C. Examplebased superresolution[J]. IEEE Computer Graphics and Applications, 2002, 22(2): 5665.
[14]BISHOP C M, BLAKE A, MARTHI B. Superresolution enhancement of video[C]//International Conference on Artificial Intelligence and Statistics. Key West, USA, 2003:410414.
 [15]SUN Jian, ZHENG Nanning, TAO Hai, et al. Image hallucination with primal sketch priors[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Madison, USA, 2003, 2: 729736.
[16]CHANG H, YEUNG D Y, XIONG Y. Superresolution through neighbor embedding[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington DC,USA, 2004, 1: 275282.
[17]SU K, TIAN Q, XUE Q,et al. Neighborhood issue in singleframe image superresolution[C]//IEEE International Conference on Multimedia and Expo. Amsterdam, The Netherlands, 2005: 14.
[18]TAI Y W,TONG W S, TANG C K. Perceptuallyinspired and edgedirected color image superresolution[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington DC, USA, 2006, 2: 19481955.
[19]JOSHI M V, CHAUDHURI S, PANUGANTI R. A learningbased method for image superresolution from zoomed observations[J]. IEEE Transactions on Systems, Man and Cybernetics, 2005, 35(3): 527537.
[20]GUNTURK B K,BATUR A U, ALTUNBASAK Y, et al. Eigenfacebased superresolution for face recognition [C]//IEEE International Conference on Image Processing. Rochester, USA, 2002, 2: 845848.
[21]GUNTURK B K, BATUR A U, ALTUNBASAK Y,et al. Eigenfacedomain superresolution for face recognition [J]. IEEE Transactions on Image Processing, 2003, 12(5): 597606.
[22]LIU Ce, SHUM H Y, ZHANG Changshui. A twostep approach to hallucinating faces: global parametric model and local nonparametric model[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Kauai Marriott, Hawaii, USA, 2001, 1: 192198
[23]LIN Dahua, LIU Wei, TANG Xiaoou. Layered local prediction network with dynamic learning for face superresolution[C]//IEEE International Conference on Image Processing. Genova, Italy, 2005, 1: 885888.
[24]GUPTA M D, RAJARAM S, PETROVIC N,et al. Restoration and recognition in a loop[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005, 1: 638644.
[25]JIA Kui, GONG Shaogang. Multiresolution patch tensor for facial expression hallucination[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA, 2006, 1: 395402.
[26]PENG Shiqi, PAN Gang, WU Zhaohui. Learningbased superresolution of 3D face model[C]//IEEE International Conference on Image Processing. Genova, Italy, 2005, 2: 382385.
 [27]WANG Xiaogang, TANG Xiaoou. Hallucinating face by eigentransformation[J]. IEEE Trans on Systems, Man and Cybernetics, 2005, 35(3): 425434.
[28]LEE D D, COGNITION H S. The manifold ways of perception[J]. Science, 2000, 290(5500): 22682269.
[29]TENENBAUM J B, SILVAM V D, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 23192323.
[30]ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 23232326.
[31]BALASUBRAMANIAN M, SCHWARTZ E L, TENENBAUM J B. The Isomap algorithm and topological stability [J]. Science, 2002, 295(5552):7.
[32]MING Chantak, ZHANG Junping. An improved superresolution with manifold learning and histogram matching [C]//Proceedings of IAPR International Conference on Biometric, LNCS3832. Berlin: SpringerVerlag, 2006: 756762.
[33]PARK S W, SAVVIDES M. Breaking the limitation of manifold analysis for superresolution of facial images [C]//IEEE International Conference on Acoustics, Speech, and Signal Processing. Honolulu, USA, 2007, 1: 573576.
[34]QIAO Jianping, LIU Ju, CHEN Yenwei. Joint blind superresolution and shadow removing[J]. IEICE Transactions on Information and Systems, 2007, E90D(12): 20602069.
[35]LIU Y H, CHEN Y T. Face recognition using total marginbased adaptive fuzzy support vector machines[J]. IEEE Transactions on Neural Networks, 2007, 18(1): 178192.
[36]WANG Yongqiao, WANG Shouyang, LAI K K. A new fuzzy support vector machine to evaluate credit risk[J]. IEEE Transactions on Fuzzy Systems, 2005, 13(6): 820831.
[37]JUANG C F, CHIU S H, SHIU S J. Fuzzy system learned through fuzzy clustering and support vector machine for human
[38]WASKE B, BENEDIKTSSON J A. Fusion of support vector machines for classification of multisensor data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(12): 38583866.
[39]ZAFEIRIOU S, TEFAS A, PITAS I. Minimum class variance support vector machines[J]. IEEE Transactions on Image Processing, 2007, 16(10): 2551 2564.
[40]OSUNA E, FREUND R, GIROSI F. Training support vector machines: an application to face detection[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Juan,Puerto Rico,1997: 130136.
[41]LI Dalong, MERSEREAU R M, SIMSKE S. Blind image deconvolution using support vector regression[C]//IEEE International Conference on Acoustics, Speech, and Signal Processing.Philadelphia, USA, 2005, 2: 113116.
 [42]乔建苹,刘 琚.基于支持向量机的盲超分辨率图像复原算法[J]. 电子学报,2007, 35(10): 4248.
 QIAO Jianping,LIU Ju.A SVMbased blind superresolution image restoration algorithm[J].Chinese Journal of Electronics,2007,35(10):4248.
[43]COMON P. Independent component analysis, a new concept?[J]. Signal Processing, 1994, 36(3): 287314.
[44]刘 琚, 何振亚. 盲源分离和盲反卷积[J]. 电子学报, 2002, 30(4): 570576.
 LIU Ju,HE Zhenya.A survey of blind source separation and blind deconvolution[J].Acta Electronica Sinica,2002,30(4):570576. 
[45]LIU Ju, QIAO Jianping. Face hallucination based on independent component analysis[C]//IEEE International Symposium on Circuits and Systems. Seattle, USA, 2008, 1: 32423245.

相似文献/References:

[1]王书舟,伞 冶.支持向量机的训练算法综述[J].智能系统学报,2008,(06):467.
 WANG Shu-zhou,SAN Ye.A survey on training algorithms for support vector machine[J].CAAI Transactions on Intelligent Systems,2008,(03):467.
[2]陈小娥,陈昭炯.多类SVM在图像艺术属性分类中的应用研究[J].智能系统学报,2009,(02):157.
 CHEN Xiao-e,CHEN Zhao-jiong.An application of multiclass SVM in the classification of artistic attributes of images[J].CAAI Transactions on Intelligent Systems,2009,(03):157.
[3]黄剑华,唐降龙,刘家锋,等.一种基于Homogeneity的文本检测新方法[J].智能系统学报,2007,(01):69.
 HUANG Jian-hua,TANG Xiang-long,LIU Jia-feng,et al.A new method for text detection based on Homogeneity[J].CAAI Transactions on Intelligent Systems,2007,(03):69.
[4]吴 青,刘三阳,郑 巍.基于乘性规则的支持向量机[J].智能系统学报,2007,(02):74.
 WU Qing,LIU San-yang,ZHENG Wei.Support vector machines based on multiplicative updates[J].CAAI Transactions on Intelligent Systems,2007,(03):74.
[5]张 亮,朱振峰,赵 耀,等.基于镜头的鲁棒视频广告检测[J].智能系统学报,2007,(02):83.
 ZHANG Liang,ZHU Zhen-feng,ZHAO Yao,et al.Video commercial detection based on the robustness of sho t[J].CAAI Transactions on Intelligent Systems,2007,(03):83.
[6]赵春晖,陈万海,万 建.一种改进的多类支持向量机超光谱图像分类方法[J].智能系统学报,2008,(01):77.
 ZHAO Chun-hui,CHEN Wan-hai,WAN jian.An improved hyperspectral image classification method for a multiclass support vector machine[J].CAAI Transactions on Intelligent Systems,2008,(03):77.
[7]杨志豪,洪 莉,林鸿飞,等.基于支持向量机的生物医学文献蛋白质关系抽取[J].智能系统学报,2008,(04):361.
 YANG Zhi-hao,HONG L i,L IN Hong-fei,et al.Extraction of information on prote in2prote in interaction from biomedical literatures using an SVM[J].CAAI Transactions on Intelligent Systems,2008,(03):361.
[8]刘 胜,李高云,江 娜.SVM性能的免疫鱼群多目标优化研究[J].智能系统学报,2010,(02):144.
 LIU Sheng,LI Gao-yun,JIANG Na.Multiobjective optimization of an immune fish swarm algorithm to improve support vector machine performance[J].CAAI Transactions on Intelligent Systems,2010,(03):144.
[9]杨振兴,刘久富,孙 琳.不变量的程序潜在错误预测[J].智能系统学报,2010,(04):327.
 YANG Zhen-xing,LIU Jiu-fu,SUN Lin.Using invariants to predict the potential for errors in programs[J].CAAI Transactions on Intelligent Systems,2010,(03):327.
[10]古丽娜孜,孙铁利,伊力亚尔,等.一种基于主动学习支持向量机哈萨克文文本分类方法[J].智能系统学报,2011,(03):261.
 GU Linazi,SUN Tieli,YI Liyaer,et al.An approach to the text categorization of the Kazakh language based on an active learning support vector machine[J].CAAI Transactions on Intelligent Systems,2011,(03):261.

备注/Memo

备注/Memo:
收稿日期:2008-07-16.
基金项目:国家自然科学基金资助项目(60572105, 60872024);
新世纪优秀人才支持计划资助项目 (NCET050582);
教育部博士点专项基金资助项目 (20050422017);
高等学校科技创新工程重大项目培育资金项目(708059);
山东省自然科学基金资助项目(Y2007G04).
通信作者:乔建苹.E-mail: jpqiao@sdu.edu.cn.
作者简介: 刘 琚,男,1965年生,教授、博士、博士生导师.现为山东大学信息科学与工程学院学术委员会副主任、通信工程系主任;海信数字多媒体技术国家重点实验室客座专家;IEEE 和IEICE会员;《电路与系统学报》和《数据采集与处理》编委.主要研究方向为无线通信中空时信号处理技术、盲信号处理理论与应用、多媒体通信与网络传输技术等.2002年到2003年为西班牙加泰罗尼亚理工大学和加泰罗尼亚通信技术研究中心访问教授,2005年受DAAD项目资助赴德国不来梅大学和杜伊斯堡埃森大学进行合作研究.教育部“新世纪优秀人才支持计划” 获得者.发表学术论文150余篇.
乔建苹,女,1981年生,讲师,博士,IEICE会员.主要研究方向为多媒体信息处理与传输、超分辨率图像重建,发表学术论文20余篇.
更新日期/Last Update: 2009-08-31