[1]程旸,王士同.基于局部保留投影的多可选聚类发掘算法[J].智能系统学报,2016,11(5):600-607.[doi:10.11992/tis.201508022]
 CHENG Yang,WANG Shitong.A multiple alternative clusterings mining algorithm using locality preserving projections[J].CAAI Transactions on Intelligent Systems,2016,11(5):600-607.[doi:10.11992/tis.201508022]
点击复制

基于局部保留投影的多可选聚类发掘算法

参考文献/References:
[1] DANG Xuanhong, BAILEY J. Generating multiple alternative clusterings via globally optimal subspaces[J]. Data mining and knowledge discovery, 2014, 28(3):569-592.
[2] GRETTON A, BOUSQUET O, SMOLA A, et al. Measuring statistical dependence with Hilbert-Schmidt norms[M]//JAIN S, SIMON H U, TOMITA E. Algorithmic Learning Theory. Berlin Heidelberg:Springer, 2005:63-77.
[3] HE Xiaofei, NIYOGI X. Locality preserving projections[C]//Advances in Neural Information Processing Systems. Vancouver, Canada, 2003, 16:153-160.
[4] BAE E, BAILEY J. COALA:a novel approach for the extraction of an alternate clustering of high quality and high dissimilarity[C]//Proceedings of the 6th International Conference on Data Mining. Hong Kong, China, 2006:53-62.
[5] GONDEK D, HOFMANN T. Non-redundant data clustering[J]. Knowledge and information systems, 2007, 12(1):1-24.
[6] JAIN P, MEKA R, DHILLON I S. Simultaneous unsupervised learning of disparate clusterings[J]. Statistical analysis and data mining:the ASA data science journal, 2008, 1(3):195-210.
[7] DANG Xuanhong, BAILEY J. Generation of alternative clusterings using the CAMI approach[C]//Proceedings of the SIAM International Conference on Data Mining, SDM 2010. Columbus, Ohio, USA, 2010, 10:118-129.
[8] DANG Xuanhong, BAILEY J. A hierarchical information theoretic technique for the discovery of non linear alternative clusterings[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, DC, USA, 2010:573-582.
[9] VINH N X, EPPS J. MinCEntropy:a novel information theoretic approach for the generation of alternative clusterings[C]//Proceedings of the IEEE International Conference on Data Mining. Sydney, Australia, 2010:521-530.
[10] COVER T M, THOMAS J A. Elements of information theory[M]. Chichester:John Wiley & Sons, 2012.
[11] KAPUR J N. Measures of information and their applications[M]. New York:Wiley-Interscience, 1994.
[12] PRINCIPE J C, XU D, FISHER J. Information theoretic learning[M]//HAYKIN S. Unsupervised Adaptive Filtering. New York:Wiley, 2000, 1:265-319.
[13] PARZEN E. On estimation of a probability density function and mode[J]. The annals of mathematical statistics, 1962, 33(3):1065-1076.
[14] CUI Ying, FERN X Z, DY J G. Non-redundant multi-view clustering via orthogonalization[C]//Proceedings of the 7th IEEE International Conference on Data Mining. Omaha, Nebraska, USA, 2007:133-142.
[15] DAVIDSON I, QI Zijie. Finding alternative clusterings using constraints[C]//Proceedings of the 8th IEEE International Conference on Data Mining. Pisa, Italy, 2008:773-778.
[16] QI Zijie, DAVIDSON I. A principled and flexible framework for finding alternative clusterings[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France, 2009:717-726.
[17] DASGUPTA S, NG V. Mining clustering dimensions[C]//Proceedings of the 27th International Conference on Machine Learning. Haifa, Israel, 2010:263-270.
[18] NIU Donglin, DY J G, JORDAN M I. Multiple non-redundant spectral clustering views[C]//Proceedings of the 27th International Conference on Machine Learning. Haifa, Israel, 2010:831-838.
相似文献/References:
[1]申彦,朱玉全.CMP上基于数据集划分的K-means多核优化算法[J].智能系统学报,2015,10(4):607.[doi:10.3969/j.issn.1673-4785.201411036]
 SHEN Yan,ZHU Yuquan.An optimized algorithm of K-means based on data set partition on CMP systems[J].CAAI Transactions on Intelligent Systems,2015,10():607.[doi:10.3969/j.issn.1673-4785.201411036]
[2]莫凌飞,蒋红亮,李煊鹏.基于深度学习的视频预测研究综述[J].智能系统学报,2018,13(1):85.[doi:10.11992/tis.201707032]
 MO Lingfei,JIANG Hongliang,LI Xuanpeng.Review of deep learning-based video prediction[J].CAAI Transactions on Intelligent Systems,2018,13():85.[doi:10.11992/tis.201707032]
[3]冯冰,李绍滋.中医脉诊信号的无监督聚类分析研究[J].智能系统学报,2018,13(4):564.[doi:10.11992/tis.201703030]
 FENG Bing,LI Shaozi.Unsupervised clustering analysis of human-pulse signal in traditional Chinese medicine[J].CAAI Transactions on Intelligent Systems,2018,13():564.[doi:10.11992/tis.201703030]
[4]鲍国强,应文豪,蒋亦樟,等.多层递阶融合模糊特征映射的模糊C均值聚类算法[J].智能系统学报,2018,13(4):594.[doi:10.11992/tis.201703047]
 BAO Guoqiang,YING Wenhao,JIANG Yizhang,et al.Fuzzy C-means clustering algorithm for multilayered hierarchical fusion fuzzy feature mapping[J].CAAI Transactions on Intelligent Systems,2018,13():594.[doi:10.11992/tis.201703047]
[5]杨文元.多标记学习自编码网络无监督维数约简[J].智能系统学报,2018,13(5):808.[doi:10.11992/tis.201804051]
 YANG Wenyuan.Unsupervised dimensionality reduction of multi-label learning via autoencoder networks[J].CAAI Transactions on Intelligent Systems,2018,13():808.[doi:10.11992/tis.201804051]
[6]赵玉新,赵廷.海底声呐图像智能底质分类技术研究综述[J].智能系统学报,2020,15(3):587.[doi:10.11992/tis.202004026]
 ZHAO Yuxin,ZHAO Ting.Survey of the intelligent seabed sediment classification technology based on sonar images[J].CAAI Transactions on Intelligent Systems,2020,15():587.[doi:10.11992/tis.202004026]
[7]王倩倩,苗夺谦,张远健.深度自编码与自更新稀疏组合的异常事件检测算法[J].智能系统学报,2020,15(6):1197.[doi:10.11992/tis.202007003]
 WANG Qianqian,MIAO Duoqian,ZHANG Yuanjian.Abnormal event detection method based on deep auto-encoder and self-updating sparse combination[J].CAAI Transactions on Intelligent Systems,2020,15():1197.[doi:10.11992/tis.202007003]
[8]许子微,陈秀宏.自步稀疏最优均值主成分分析[J].智能系统学报,2021,16(3):416.[doi:10.11992/tis.201911028]
 XU Ziwei,CHEN Xiuhong.Sparse optimal mean principal component analysis based on self-paced learning[J].CAAI Transactions on Intelligent Systems,2021,16():416.[doi:10.11992/tis.201911028]
[9]雷涛,王洁,薛丁华,等.差异特征融合的无监督SAR图像变化检测[J].智能系统学报,2021,16(3):595.[doi:10.11992/tis.202103011]
 LEI Tao,WANG Jie,XUE Dinghua,et al.Unsupervised SAR image change detection based on difference feature fusion[J].CAAI Transactions on Intelligent Systems,2021,16():595.[doi:10.11992/tis.202103011]
[10]杨慧,张婷,金晟,等.基于二进制生成对抗网络的视觉回环检测研究[J].智能系统学报,2021,16(4):673.[doi:10.11992/tis.202007007]
 YANG Hui,ZHANG Ting,JIN Sheng,et al.Visual loop closure detection based on binary generative adversarial network[J].CAAI Transactions on Intelligent Systems,2021,16():673.[doi:10.11992/tis.202007007]

备注/Memo

收稿日期:2015-08-26。
基金项目:国家自然科学基金项目(61272210).
作者简介:程旸,男,1991年生,硕士研究生,主要研究方向为人工智能与模式识别、数据挖掘;王士同,男,1964年生,教授,博士生导师,中国离散数学学会常务理事,中国机器学习学会常务理事。主要研究方向为人工智能、模式识别和图像处理。发表学术论文近百篇,其中被SCI、EI检索50余篇。
通讯作者:程旸.E-mail:szhchengyang@163.com

更新日期/Last Update: 1900-01-01
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134