[1]顾军华,谢志坚,武君艳,等.基于图游走的并行协同过滤推荐算法[J].智能系统学报,2019,14(4):743-751.[doi:10.11992/tis.201806002]
 GU Junhua,XIE Zhijian,WU Junyan,et al.Parallel collaborative filtering recommendation algorithm based on graph walk[J].CAAI Transactions on Intelligent Systems,2019,14(4):743-751.[doi:10.11992/tis.201806002]
点击复制

基于图游走的并行协同过滤推荐算法

参考文献/References:
[1] 黄立威,江碧涛,吕守业,等.基于深度学习的推荐系统研究综述[J].计算机学报,2018,41(7):1619-1647. HUANG Liwei, LIU Yanbo, LI Deyi. Deep learning based recommender systems[J].Chinese journal of computers. 2018,41(07):1619-1647.
[2] 孙光福, 吴乐, 刘淇, 等. 基于时序行为的协同过滤推荐算法[J]. 软件学报, 2013, 24(11):2721-2733 SUN Guangfu, WU Le, LIU Qi, et al. Recommendations based on collaborative filtering by exploiting sequential behaviors[J]. Journal of software, 2013, 24(11):2721-2733
[3] 许智宏, 蒋新宇, 董永峰, 等. 一种基于Spark的改进协同过滤算法研究[J]. 计算机应用与软件, 2017, 34(5):247-254, 278 XU Zhihong, JIANG Xinyu, DONG Yongfeng, et al. An improved collaborative filtering algorithm based on Spark[J]. Computer applications and software, 2017, 34(5):247-254, 278
[4] SUN Baoshan, DONG Lingyu. Dynamic model adaptive to user interest drift based on cluster and nearest neighbors[J]. IEEE access, 2017, 5:1682-1691.
[5] 彭宏伟, 靳远远, 吕晓强, 等. 一种基于矩阵分解的上下文感知POI推荐算法[J/OL]. 计算机学报:(2018-05-14)[2018-05-30]. http://kns.cnki.net/kcms/detail/11.1826.TP.20180512.2150.008.html. PENG Hongwei, JIN Yuanyuan, LÜ Xiaoqiang, et al. Context-aware POI recommendation based on matrix factorization[J]. Chinese Journal of Computers:(2018-05-14)[2018-05-30]. http://kns.cnki.net/kcms/detail/11.1826.TP.20180512.2150.008.html.
[6] WU Jibing, YU Lianfei, ZHANG Qun, et al. Multityped community discovery in time-evolving heterogeneous information networks based on tensor decomposition[J]. Complexity, 2018, 2018:9653404.
[7] MA Wenping, WU Yue, GONG Maoguo, et al. Local probabilistic matrix factorization for personal recommendation[C]//Proceedings of the 13th International Conference on Computational Intelligence and Security. Hong Kong, China, 2017:97-101.
[8] 杨志文, 刘波. 基于Hadoop平台协同过滤推荐算法[J]. 计算机系统应用, 2013, 22(7):108-112 YANG Zhiwen, LIU Bo. Hadoop-based collaborative filtering recommendation algorithm[J]. Computer systems and applications, 2013, 22(7):108-112
[9] LU F, HONG L, CHANGFENG L. The improvement and implementation of distributed item-based collaborative filtering algorithm on Hadoop[C]//Proceedings of the 34th Chinese Control Conference. Hangzhou, China, 2015:9078-9083.
[10] KUPISZ B, UNOLD O. Collaborative filtering recommendation algorithm based on Hadoop and Spark[C]//Proceedings of 2015 IEEE International Conference on Industrial Technology. Seville, Spain, 2015:1510-1514.
[11] 冷亚军, 陆青, 梁昌勇. 协同过滤推荐技术综述[J]. 模式识别与人工智能, 2014, 27(8):720-734 LENG Yajun, LU Qing, LIANG Changyong. Survey of recommendation based on collaborative filtering[J]. Pattern recognition and artificial intelligence, 2014, 27(8):720-734
[12] 范波, 程久军. 用户间多相似度协同过滤推荐算法[J]. 计算机科学, 2012, 39(1):23-26 FAN Bo, CHENG Jiujun. Collaborative filtering recommendation algorithm based on user’s multi-similarity[J]. Computer Science, 2012, 39(1):23-26
[13] 徐堃, 朱小柯, 荆晓远. 基于改进协同过滤的个性化web服务推荐方法研究[J]. 计算机技术与发展, 2018, 28(1):64-68 XU Kun, ZHU Xiaoke, JING Xiaoyuan. Research on personalized web service recommendation based on improved collaborative filtering[J]. Computer technology and development, 2018, 28(1):64-68
[14] WU Xiaokun, CHENG Bo, CHEN Junliang. Collaborative filtering service recommendation based on a novel similarity computation method[J]. IEEE transactions on services computing, 2017, 10(3):352-365.
[15] 肖春景, 夏克文, 乔永卫. 基于时序逆影响的随机游走推荐算法[J]. 计算机应用研究, 2018, 35(8):2304-2307 XIAO Chunjing, XIA Kewen, QIAO Yongwei. Temporal inverse influence based recommendation method by using random walk[J]. Application research of computers, 2018, 35(8):2304-2307
[16] 王鹤, 邬春学. 基于图结构和项目类型的协同过滤推荐算法[J]. 数据通信, 2016(5):44-47 WANG He, WU Chunxue. Collaborative filtering recommenddation algorithm based on graph structure and item type[J]. Data communications, 2016(5):44-47
[17] 宫秀文, 张佩云. 基于PageRank的社交网络影响最大化传播模型与算法研究[J]. 计算机科学, 2013, 40(S1):136-140 GONG Xiuwen, ZHANG Peiyun. Research on propagation model and algorithm for influence maximization in social network based on pageRank[J]. Computer science, 2013, 40(S1):136-140
[18] HU Yan, PENG Qimin, HU Xiaohui, et al. Time aware and data sparsity tolerant web service recommendation based on improved collaborative filtering[J]. IEEE transactions on services computing, 2015, 8(5):782-794.
[19] 黄筱云, 董国海, 常佳夫, 等. Level set函数快速步进重构并行算法的改进[J]. 哈尔滨工程大学学报, 2017, 38(6):836-842 HUANG Xiaoyun, DONG Guohuai, CHANG Jiafu, et al. Improvement of parallel fast marching method for reconstruction of level set function[J]. Journal of Harbin Engineering University, 2017, 38(6):836-842
[20] LIU Tiantian, FANG Zhiyi, ZHAO Chen, et al. Parallelization of a series of extreme learning machine algorithms based on spark[C]//Proceedings of the IEEE/ACIS 15th International Conference on Computer and Information Science. Okayama, Japan, 2016.
[21] 顾军华, 官磊, 张建, 等. 基于Hadoop的IPTV隐式评分模型[J]. 计算机应用, 2017, 37(11):3188-3193 GU Junhua, GUAN Lei, ZHANG Jian, et al. IPTV implicit scoring model based on Hadoop[J]. Journal of computer applications, 2017, 37(11):3188-3193
相似文献/References:
[1]沈苗,来天平,王素美,等.北京大学课程推荐引擎的设计和实现[J].智能系统学报,2015,10(3):369.[doi:10.3969/j.issn.1673-4785.201409045]
 SHEN Miao,LAI Tianping,WANG Sumei,et al.Design and implementation of the course recommendation engine in Peking University[J].CAAI Transactions on Intelligent Systems,2015,10():369.[doi:10.3969/j.issn.1673-4785.201409045]
[2]王大玲,冯时,张一飞,等.社会媒体多模态、多层次资源推荐技术研究[J].智能系统学报,2014,9(3):265.[doi:10.3969/j.issn.1673-4785.201403068]
 WANG Daling,FENG Shi,ZHANG Yifei,et al.Study on the recommendations of multi-modal and multi-level resources in social media[J].CAAI Transactions on Intelligent Systems,2014,9():265.[doi:10.3969/j.issn.1673-4785.201403068]
[3]马钰,张岩,王宏志,等.面对智能导诊的个性化推荐算法[J].智能系统学报,2018,13(3):352.[doi:10.11992/tis.201711036]
 MA Yu,ZHANG Yan,WANG Hongzhi,et al.A personalized recommendation algorithm for intelligent guidance[J].CAAI Transactions on Intelligent Systems,2018,13():352.[doi:10.11992/tis.201711036]
[4]陈君同,古天龙,常亮,等.融合协同过滤与用户偏好的旅游组推荐方法[J].智能系统学报,2018,13(6):999.[doi:10.11992/tis.201802011]
 CHEN Juntong,GU Tianlong,CHANG Liang,et al.A tourist group recommendation method combining collaborative filtering and user preferences[J].CAAI Transactions on Intelligent Systems,2018,13():999.[doi:10.11992/tis.201802011]
[5]涂飞.多特征融合的兴趣点推荐算法[J].智能系统学报,2019,14(4):779.[doi:10.11992/tis.201801048]
 TU Fei.A point of interest recommendation algorithm based on multi-feature fusion[J].CAAI Transactions on Intelligent Systems,2019,14():779.[doi:10.11992/tis.201801048]
[6]吴国栋,查志康,涂立静,等.图神经网络推荐研究进展[J].智能系统学报,2020,15(1):14.[doi:10.11992/tis.201908034]
 WU Guodong,ZHA Zhikang,TU Lijing,et al.Research advances in graph neural network recommendation[J].CAAI Transactions on Intelligent Systems,2020,15():14.[doi:10.11992/tis.201908034]
[7]梁丽君,李业刚,张娜娜,等.融合用户特征优化聚类的协同过滤算法[J].智能系统学报,2020,15(6):1091.[doi:10.11992/tis.201710024]
 LIANG Lijun,LI Yegang,ZHANG Nana,et al.Collaborative filtering algorithm combining user features and preferences in optimized clustering[J].CAAI Transactions on Intelligent Systems,2020,15():1091.[doi:10.11992/tis.201710024]
[8]王健宗,肖京,朱星华,等.联邦推荐系统的协同过滤冷启动解决方法[J].智能系统学报,2021,16(1):178.[doi:10.11992/tis.202009032]
 WANG Jianzong,XIAO Jing,ZHU Xinghua,et al.Cold starts in collaborative filtering for federated recommender systems[J].CAAI Transactions on Intelligent Systems,2021,16():178.[doi:10.11992/tis.202009032]
[9]孟祥福,齐雪月,张全贵,等.用户-兴趣点耦合关系的兴趣点推荐方法[J].智能系统学报,2021,16(2):228.[doi:10.11992/tis.201907034]
 MENG Xiangfu,QI Xueyue,ZHANG Quangui,et al.A POI recommendation approach based on user-POI coupling relationships[J].CAAI Transactions on Intelligent Systems,2021,16():228.[doi:10.11992/tis.201907034]
[10]刘芳,田枫,李欣,等.融入学习者模型在线学习资源协同过滤推荐方法[J].智能系统学报,2021,16(6):1117.[doi:10.11992/tis.202009005]
 LIU Fang,TIAN Feng,LI Xin,et al.A collaborative filtering recommendation method for online learning resources incorporating the learner model[J].CAAI Transactions on Intelligent Systems,2021,16():1117.[doi:10.11992/tis.202009005]
[11]李慧,马小平,胡云,等.融合上下文信息的社会网络推荐系统[J].智能系统学报,2015,10(2):293.[doi:10.3969/j.issn.1673-4785.201406017]
 LI Hui,MA Xiaoping,HU Yun,et al.Social network recommendaton system mixing contex information[J].CAAI Transactions on Intelligent Systems,2015,10():293.[doi:10.3969/j.issn.1673-4785.201406017]

备注/Memo

收稿日期:2018-06-01。
基金项目:河北省科技计划项目(17210305D);天津市科技计划项目(16ZXHLSF0023);天津市自然科学基金项目(15JCQNJC00600).
作者简介:顾军华,男,1966年生,教授,博士生导师,CCF会员,中国离散数学学会常务理事,河北省计算机学会副理事长。主要研究方向为数据挖掘、智能信息处理等。完成科研项目30余项,发表学术论文50余篇;谢志坚,男,1995年生,硕士研究生,主要研究方向为数据挖掘与机器学习;武君艳,女,1994年生,硕士研究生,主要研究方向为数据挖掘与计算机仿真。
通讯作者:张素琪.E-mail:zhangsuqie@163.com

更新日期/Last Update: 2019-08-25
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134