[1]费宇杰,吴小俊.一种局部聚合描述符和组显著编码相结合的编码方法[J].智能系统学报,2017,12(02):172-178.[doi:10.11992/tis.201602010]
 FEI Yujie,WU Xiaojun.A new feature coding algorithm based on the combination of group salient coding and VLAD[J].CAAI Transactions on Intelligent Systems,2017,12(02):172-178.[doi:10.11992/tis.201602010]
点击复制

一种局部聚合描述符和组显著编码相结合的编码方法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第12卷
期数:
2017年02期
页码:
172-178
栏目:
出版日期:
2017-04-25

文章信息/Info

Title:
A new feature coding algorithm based on the combination of group salient coding and VLAD
作者:
费宇杰 吴小俊
江南大学 物联网工程学院, 江苏 无锡 214122
Author(s):
FEI Yujie WU Xiaojun
School of IoT Engineering, Jiangnan University, Wuxi 214122, China
关键词:
图像分类特征编码词袋局部聚合描述符软分配显著性
Keywords:
image classificationfeature codingbag-of-featuresVLADsoft assignmentsaliency
分类号:
TP391
DOI:
10.11992/tis.201602010
摘要:
局部聚合描述符(vector of locally aggregated descriptors,VLAD)的特征编码方法在大规模图像检索上取得了较好的效果。但是,VLAD存在硬分配难以准确描述局部特征向量与视觉词汇隶属关系的问题,本文将两种软分配编码与VLAD相结合来增强局部特征向量与视觉词汇的隶属关系。新的编码方法在15 Scenes、Corel 10和UIIC Sports Event数据库上的实验结果表明:1)在VLAD中加入局部软分配能够提高分类准确率,而且对比Fisher编码在分类准确率上也有一定的优越性;2)除了软分配,显著性对提高分类准确率也起到了一定的作用。
Abstract:
The vector of locally aggregated descriptors (VLAD) has achieved good results in addressing large-scale image retrieval problems; however, VLAD has a defect in that the relationship between local descriptors and visual words cannot be accurately described using hard assignments. In this paper, we therefore combine two kinds of soft assignment coding methods with VLAD to enhance the relationship between local feature vectors and visual words. We applied our method to 15 scenes from the Corel 10 and UIUC Sports Event datasets, with our experimental results showing that our combined partial soft assignment coding method and VLAD was able to enhance classification accuracy and achieve better classification accuracy than the well-known Fisher Coding approach. In addition to soft assignment, saliency also plays an important role in enhancing classification accuracy.

参考文献/References:

[1] COLLINS R T, LIPTON A J, KANADE T, et al. A system for video surveillance and monitoring[R]. CMU-RITR-00-12. Pittsburgh, Penn: Carnegie Mellon University, 2000.
[2] VAILAYA A, FIGUEIREDO M A T, JAIN A K, et al. Image classification for content-based indexing[J]. IEEE transactions on image processing, 2001, 10(1): 117-130.
[3] KOSALA R, BLOCKEEL H. Web mining research: a survey[J]. ACM SIGKDD explorations newsletter, 2000, 2(1): 1-15.
[4] JOACHIMS T. Text categorization with support vector machines: learning with many relevant features[C]//Proceedings of the 10th European Conference on Machine Learning. Berlin Heidelberg: Springer, 1998.
[5] DANCE C, WILLAMOWSKI J, FAN Lixin, et al. Visual categorization with bags of keypoints[C]//Proceedings of ECCV International Workshop on Statistical Learning in Computer Vision. Prague, CZ, 2004.
[6] HUANG Yongzhen, WU Zifeng, WANG Liang, et al. Feature coding in image classification: a comprehensive study[J]. IEEE transactions on pattern analysis and machine intelligence, 2014, 36(3): 493-506.
[7] VAN GEMERT J C, VEENMAN C J, SMEULDERS A W M, et al. Visual word ambiguity[J]. IEEE transactions on pattern analysis and machine intelligenc, 2010, 32(7): 1271-1283.
[8] VAN GEMERT J C, GEUSEBROEK J M, VEENMAN C J, et al. Kernel codebooks for scene categorization[C]//Proceedings of the European Conference on Computer Vision. Berlin Heidelberg: Springer, 2008: 696-709.
[9] YANG Jianchao, YU Kai, GONG Yihong, et al. Linear spatial pyramid matching using sparse coding for image classification[C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009: 1794-1801.
[10] WANG Jinjun, YANG Jianchao, YU Kai, et al. Locality-constrained linear coding for image classification[C]//Proceedings of 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA: IEEE, 2010: 3360-3367.
[11] PERRONNIN F, DANCE C. Fisher kernels on visual vocabularies for image categorization[C]//Proceedings of 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, MN: IEEE, 2007.
[12] ZHOU Xi, YU Kai, ZHANG Tong, et al. Image classification using super-vector coding of local image descriptors[C]//Proceedings of the 11th European Conference on Computer Vision. Berlin Heidelberg: Springer, 2010: 141-154.
[13] JéGOU H, DOUZE M, SCHMID C, et al. Aggregating local descriptors into a compact image representation[C]//Proceedings of 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA: IEEE, 2010: 3304-3311
[14] HUANG Yongzhen, HUANG Kaiqi, YU Yinan, et al. Salient coding for image classification[C]//Proceedings of 2011 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI: IEEE, 2011.
[15] WU Zifeng, HUANG Yongzhen, WANG Liang, et al. Group encoding of local features in image classification[C]//Proceedings of the 21st International Conference on Pattern Recognition. Tsukuba: IEEE, 2012.
[16] LIU Lingqiao, WANG Lei, Liu Xinwang. In defense of soft-assignment coding[C]//Proceedings of 2011 IEEE International Conference on Computer Vision. Barcelona: IEEE, 2011.
[17] PERRONNIN F, SANCHEZ J, MENSINK T. Improving the fisher kernel for large-scale image classification[C]//Proceedings of the 11th European Conference on Computer Vision. Berlin Heidelberg: Springer, 2010: 143-156.
[18] LI F F, PERONA P. A Bayesian hierarchical model for learning natural scene categories[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2005: 524-531.
[19] LI Jia, WANG J Z. Automatic linguistic indexing of pictures by a statistical modeling approach[J]. IEEE transactions on pattern analysis and machine intelligence, 2003, 25(9): 1075-1088.
[20] LI Lijia, LI Feifei. What, where and who? Classifying events by scene and object recognition[C]//Proceedings of the 11th International Conference on Computer Vision. Rio de Janeiro: IEEE, 2007: 1-8.
[21] LAZEBNIK S, SCHMID C, PONCE J. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories[C]//Proceedings of 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, NY, USA: IEEE, 2006: 2169-2178.
[22] LLOYD S. Least squares quantization in PCM[J]. IEEE transactions on information theory, 1982, 28(2): 129-137.

相似文献/References:

[1]李海峰,杜军平.颜色特征的图像分类技术研究[J].智能系统学报,2008,3(02):65.[doi:CNKI:SUN:ZNXT.0.2008-02-017]
[2]李海峰,杜军平.颜色特征的图像分类技术研究[J].智能系统学报,2008,3(02):155.
 LI Hai-feng,DU Jun-ping.Image classification technology based on color features[J].CAAI Transactions on Intelligent Systems,2008,3(02):155.
[3]姚伏天,钱沄涛.高斯过程及其在高光谱图像分类中的应用[J].智能系统学报,2011,6(05):396.
 YAO Futian,QIAN Yuntao.Gaussian process and its applications in hyperspectral image classification[J].CAAI Transactions on Intelligent Systems,2011,6(02):396.
[4]尤雅萍,成运,苏松志,等.基于谱域-空域结合特征和图割原理的高光谱图像分类[J].智能系统学报,2015,10(02):201.[doi:10.3969/j.issn.1673-4785.201410040]
 YOU Yaping,CHENG Yun,SU Songzhi,et al.Hyperspectral image classification based on spectral-spatial combination features and graph cut[J].CAAI Transactions on Intelligent Systems,2015,10(02):201.[doi:10.3969/j.issn.1673-4785.201410040]
[5]赵骞,李敏,赵晓杰,等.基于感受野学习的特征词袋模型简化算法[J].智能系统学报,2016,11(5):663.[doi:10.11992/tis.201601001]
 ZHAO Qian,LI Min,ZHAO Xiaojie,et al.Learning receptive fields for compact bag-of-feature model[J].CAAI Transactions on Intelligent Systems,2016,11(02):663.[doi:10.11992/tis.201601001]
[6]孙劲光,邓智硕.局部特征脸型分类方法[J].智能系统学报,2017,12(01):104.[doi:10.11992/tis.201605021]
 SUN Jinguang,DENG Zhishuo.Local feature facial classification method[J].CAAI Transactions on Intelligent Systems,2017,12(02):104.[doi:10.11992/tis.201605021]
[7]杨梦铎,栾咏红,刘文军,等.基于自编码器的特征迁移算法[J].智能系统学报,2017,12(06):894.[doi:10.11992/tis.201706037]
 YANG Mengduo,LUAN Yonghong,LIU Wenjun,et al.Feature transfer algorithm based on an auto-encoder[J].CAAI Transactions on Intelligent Systems,2017,12(02):894.[doi:10.11992/tis.201706037]
[8]马忠丽,刘权勇,武凌羽,等.一种基于联合表示的图像分类方法[J].智能系统学报,2018,13(02):220.[doi:10.11992/tis.201611036]
 MA Zhongli,LIU Quanyong,WU Lingyu,et al.Syncretic representation method for image classification[J].CAAI Transactions on Intelligent Systems,2018,13(02):220.[doi:10.11992/tis.201611036]
[9]魏彩锋,孙永聪,曾宪华.图正则化字典对学习的轻度认知功能障碍预测[J].智能系统学报,2019,14(02):369.[doi:10.11992/tis.201709033]
 WEI Caifeng,SUN Yongcong,ZENG Xianhua.Dictionary pair learning with graph regularization for mild cognitive impairment prediction[J].CAAI Transactions on Intelligent Systems,2019,14(02):369.[doi:10.11992/tis.201709033]
[10]赵玉新,赵廷.海底声呐图像智能底质分类技术研究综述[J].智能系统学报,2020,15(3):587.[doi:10.11992/tis.202004026]
 ZHAO Yuxin,ZHAO Ting.Survey of the intelligent seabed sediment classification technology based on sonar images[J].CAAI Transactions on Intelligent Systems,2020,15(02):587.[doi:10.11992/tis.202004026]

备注/Memo

备注/Memo:
收稿日期:2016-3-1;改回日期:。
基金项目:国家自然科学基金项目(61373055, 61672265);江苏省教育厅科技成果产业化推进项目(JH10-28).
作者简介:费宇杰,男,1992年生,硕士研究生,主要研究方向为图像分类、特征编码;吴小俊,男,1967年生,教授,主要研究方向为模式识别,计算机视觉,模糊系统,神经网络,智能系统。
通讯作者:吴小俊. E-mail:xiaojun_wu_jnu@163.com.
更新日期/Last Update: 1900-01-01