[1]姚伏天,钱沄涛.高斯过程及其在高光谱图像分类中的应用[J].智能系统学报,2011,6(05):396-404.
 YAO Futian,QIAN Yuntao.Gaussian process and its applications in hyperspectral image classification[J].CAAI Transactions on Intelligent Systems,2011,6(05):396-404.
点击复制

高斯过程及其在高光谱图像分类中的应用(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第6卷
期数:
2011年05期
页码:
396-404
栏目:
出版日期:
2011-10-30

文章信息/Info

Title:
Gaussian process and its applications in hyperspectral image classification
文章编号:
1673-4785(2011)05-0396-09
作者:
姚伏天12钱沄涛12
1.浙江大学 计算机学院,浙江 杭州 310027;
2.浙江大学 人工智能研究所,浙江 杭州 310027
Author(s):
YAO Futian12 QIAN Yuntao12
1.College of Computer Science, Zhejiang University, Hangzhou 310027, China;
2.Institute of Artificial Intelligence, Zhejiang University, Hangzhou 310027, China
关键词:
高斯过程高光谱图像机器学习图像分类
Keywords:
Gaussian process hyperspectral imaging machine learning image classification
分类号:
TP181
文献标志码:
A
摘要:
高光谱遥感图像分类是高光谱成像信息处理的研究热点,高光谱成像的内在特点对于分类器设计具有直接影响.高斯过程是近年来发展迅速的一种新的机器学习方法,具备容易实现、超参数可自适应获取以及预测输出具有概率意义等优点,比较适合于处理图像分类问题.首先对高斯过程的基本概念及其主要的分类算法进行了简要介绍,然后在对高光谱图像分类的特点和高光谱图像分类的研究现状的分析基础上,讨论了基于高斯过程的高光谱图像分类的基本思想,提出了基于空间约束的高斯过程分类和基于半监督高斯过程分类等适合高光谱图像分类的新方法.最后对基于高斯过程的高光谱图像分类研究的发展趋势进行了展望.
Abstract:
Hyperspectral image classification is one of the hotspots in the field of remote sensing applications. The classification performance is affected by the inherit characteristics of hyperspectral imaging. Gaussian process (GP) is a recently developed machine learning method which enables explicitly probabilistic modeling and makes results easily interpretable. Furthermore, hyperparameters of GP can be learned from training data, which overcomes the difficulties of fixing model parameters in most classifiers. This paper introduced the basic concept of GP and some GPbased classification methods. After analyzing the characteristics of hyperspectral imaging and the existing classification methods for hyperspectral images, GP based classification for hyperspectral images was discussed, and some new GPbased classification methods such as GP with spatial constraints and semisupervised GP methods were proposed. Finally, several future research trends of GP and hyperspectral image classification were given.

参考文献/References:

[1]WIENER N. Extrapolation, interpolation, and smoothing of stationary time series, with engineering applications[M]. Cambridge, USA: MIT Press, 1949: 102106.
[2]MATHERON G. The intrinsic random functions and their applications[J]. Advances in Applied Probability, 1973, 5(3): 439468.
[3]JOURNEL A G, HUIJBREGTS C J. Mining geostatistics[M]. New York, USA: SpringerVerlag, 1978: 304310.
[4]THOMPSON P D. Optimum smoothing of twodimensional fields[J]. Tellus, 1956, 8(3): 384393.
[5]DALEY R. Atmospheric data analysis[M]. Cambridge, UK: Cambridge University Press, 1993: 99107.
[6]WHITTLE P. Prediction and regulation by linear leastsquare methods[M]. London, UK: English Universities Press, 1984: 5869.
[7]RIPLEY B D. Spatial statistics[M]. Hoboken, USA: WileyIEEE, 2004: 4450.
[8]CRESSIE N. Statistics for spatial data[J]. Terra Nova, 1992, 4(5): 613617.
[9]O’HAGAN A, KINGMAN J F C. Curve fitting and optimal design for prediction[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1978, 40(1): 142.
[10]SACKS J, WELCH W J, MITCHELL T J, et al. Design and analysis of computer experiments[J]. Statistical Science, 1989, 4(4): 409423.
[11]SANTNER T J, WILLIAMS B J, NOTZ W. The design and analysis of computer experiments[M]. New York, USA: SpringerVerlag, 2003: 61 65.
[12]WILLIAMS C K I, RASMUSSEN C E. Gaussian processes for regression[M]. Cambridge, USA: MIT Press, 1996: 2537.
[13]RASMUSSEN C E, WILLIAMS C K. Gaussian processes for machine learning[M]. Cambridge, USA: MIT Press, 2006: 1530.
[14]WILLIAMS C K I, BARBER D. Bayesian classification with Gaussian processes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(12): 13421351.
[15]GIBBS M N, MACKAY D J C. Variational Gaussian process classifiers[J]. IEEE Transactions on Neural Networks, 2000, 11(6): 14581464.
[16]NEAL R. Regression and classification using Gaussian process priors[J]. Bayesian Statistics, 1998, 6(10): 475501.
[17]CHANG C I. Hyperspectral imaging: techniques for spectral detection and classification[M]. New York, USA: Kluwer Academic Plenum Publishers, 2003: 816.
[18]MINKA T P. A family of algorithms for approximate Bayesian inference[D]. Cambridge: Massachusetts Institute of Technology, 2001: 3648.
[19]GIBBS M N, MACKAY D J C. Variational Gaussian process classifiers[J]. IEEE Transactions on Neural Networks, 2002, 11(6): 14581464.
[20]SEEGER M. Bayesian model selection for support vector machines, Gaussian processes and other kernel classifiers [M]//SOLLA S A, LEEN T K, MULLER K L. Advances in Neural Information Processing Systems. Cambridge, USA: the MIT Press, 2000: 603609.
[21]SHAWETAYLOR J, CRISTIANINI N. Kernel methods for pattern analysis[M]. Cambridge, UK: Cambridge University Press, 2004: 4857.
[22]FLETCHER R. Practical methods of optimization: constrained optimization[M]. Hoboken, USA: John Wiley & Sons Inc, 1984: 8794.
[23]NOCEDAL J, WRIGHT S J. Numerical optimization[M]. New York, USA: SpringerVerlag, 1999: 5364.
[24]URTASUN R, DARRELL T. Discriminative Gaussian process latent variable model for classification[C]//International Conference on Machine Learning. Corvallis, USA, 2007: 934937.
[25]BAUDAT G, ANOUAR F. Generalized discriminant analysis using a kernel approach[J]. Neural Computation, 2000, 12(10): 23852404.
[26]SUGIYAMA M. Local Fisher discriminant analysis for supervised dimensionality reduction[C]//International Conference on Machine Learning. Pittsburgh, USA, 2006: 905912.
[27]GROCHOW K, MARTIN S L, HERTZMANN A, et al. Stylebased inverse kinematics[J]. ACM Transactions on Graphics, 2004, 23(3): 522531.
[28]CSAT L. Gaussian processes: iterative sparse approximation[D]. Birmingham, UK: Aston University, 2005: 2634.
[29]ZHU Xiaojin, GHAHRAMANI Z, LAFFERTY J. Semisupervised learning using Gaussian fields and harmonic functions[C]//Proceedings of the 20th International Conference on Machine Learning. Washington, DC, USA, 2003: 912914.
[30]SINDHWANI V, CHU W, KEERTHI S S. Semisupervised Gaussian process classifiers[C]//International Joint Conference on Artificial Intelligence. Hyderabad, India, 2007: 10591064.
[31]HUGHES G. On the mean accuracy of statistical pattern recognizers[J]. IEEE Transactions on Information Theory, 1968, 14(1): 5563.
[32]QIAN Y, YAO F, JIA S. Band selection for hyperspectral imagery using affinity propagation[J]. IET Computer Vision, 2010, 3(4): 213222.
[33]贺霖,潘泉,邸韦华,等.高光谱图像高维多尺度自回归有监督检测[J]. 自动化学报, 2009, 35(5): 509518. HE Lin, PAN Quan, DI Weihua, et al. Supervised detection for hyperspectral imagery based on high dimensional multiscale autoregression[J]. Acta Automatica Sinica, 2009, 35(5): 509518.
[34]熊桢,童庆禧.用于高光谱遥感图象分类的一种高阶神经网络算法[J]. 中国图象图形学报, 2000, 5(3): 196201.
XIONG Zhen, TONG Qingxi. Highrank artificial neural network algorithm for classification of hyperspectral image data[J]. Journal of Image and Graphics, 2000, 5(3): 196201.
[35]MELGANI F, BRUZZONE L. Classification of hyperspectral remote sensing images with support vector machines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8): 17781790.
[36]刘春红.超光谱遥感图像降维及分类方法研究[D].哈尔滨:哈尔滨工程大学, 2005: 8694.
LIU Chunhong. Research on dimensional reduction and classification of hyperspectral remote sensing image[D]. Harbin: Harbin Engineering University, 2005: 8694.
[37]KITTLER J, PAIRMAN D. Contextual pattern recognition applied to cloud detection and identification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 23(6): 855863.
[38]姚伏天,钱沄涛.用于高光谱遥感图像分类的空间约束高斯过程方法[J].南京大学学报:自然科学版, 2009, 45(5): 665670.
 YAO Futian, QIAN Yuntao. A spatial Gaussian process method for hyperspectral remote sensing imagery classification[J]. Journal of Nanjing University: Natural Sciences, 2009, 45(5): 665670.
[39]ROSSI R E, DUNGAN J L, BECK L R. Kriging in the shadows: geostatistical interpolation for remote sensing[J]. Remote Sensing of Environment, 1994, 49(1): 3240.
[40]DENG H, CLAUSI D A. Advanced Gaussian MRF rotationinvariant texture features for classification of remote sensing imagery[C]//Computer Society Conference on Computer Vision and Pattern Recognition. Madison, USA, 2003: 685689.
[41]ZHONG Ping, WANG Runsheng. A multiple conditional random fields ensemble model for urban area detection in remote sensing optical images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(12): 39783988.
[42]LAFFERTY J, MCCALLUM A, PEREIRA F. Conditional random fields: probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the Eighteenth International Conference on Machine Learning. Williamstown, USA, 2001: 282289.
[43]KUMAR S, HEBERT M. Discriminative random fields[J]. International Journal of Computer Vision, 2006, 68(2): 179201.
[44]LI Jiming, HU Zhenfang, QIAN Yuntao. Hyperspectral data classification using margin infused relaxed algorithm[C]//International Conference on Image Processing. Hong Kong, China, 2009: 16691672.
[45]LI Jiming, QIAN Yuntao. Regularized multinomial regression method for hyperspectral data classification via pathwise coordinate optimization[C]//Digital Image Computing: Techniques and Applications. Melbourne, Australia, 2009: 540545.
[46]YAO Futian, Qian Yuntao. Band selection based Gaussian processes for hyperspectral remote sensing images classification[C]//International Conference on Image Processing. Hong Kong, China, 2009: 28452848.
[47]VATSAVAI R R, SHEKHAR S, BURK T E. A semisupervised learning method for remote sensing data mining[C]//International Conference on Tools with Artificial Intelligence. Hong Kong, China, 2005: 205211.
[48]BELKIN M, NIYOGI P, SINDHWANI V. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples[J]. The Journal of Machine Learning Research, 2006, 7: 23992434.

相似文献/References:

[1]赵春晖,张燚.相关向量机分类方法的研究进展与分析[J].智能系统学报,2012,7(04):294.
 ZHAO Chunhui,ZHANG Yi.Research progress and analysis on methods for classification of RVM[J].CAAI Transactions on Intelligent Systems,2012,7(05):294.
[2]陈姗姗,宁纪锋,彭艺伟,等.基于近红外高光谱图像的苹果轻微损伤检测[J].智能系统学报,2013,8(04):356.[doi:10.3969/j.issn.1673-4785.201304041]
 CHEN Shanshan,NING Jifeng,PENG Yiwei,et al.Detection of slight bruises on apples using near-infrared hyperspectral image[J].CAAI Transactions on Intelligent Systems,2013,8(05):356.[doi:10.3969/j.issn.1673-4785.201304041]

备注/Memo

备注/Memo:
收稿日期: 2010-10-19.
基金项目:国家自然科学基金资助项目(60872071). 
通信作者:钱沄涛.E-mail:ytqian@zju.edu.cn.
作者简介:
姚伏天,男,1976年生,博士研究生,主要研究方向为模式识别、机器学习、高光谱成像信息处理,发表学术论文20余篇.
 钱沄涛,男,1968年生,教授,博士生导师,中国计算机学会人工智能与模式识别专业委员会委员、模糊逻辑与多值逻辑专业委员会委员.主要研究方向为模式识别、机器学习、信号处理,承担多项国家自然科学基金项目、国际合作基金项目和省部级重点科技项目,发表学术论文70余篇.
更新日期/Last Update: 2011-11-16