[1]程旸,蒋亦樟,钱鹏江,等.知识迁移的极大熵聚类算法及其在纹理图像分割中的应用[J].智能系统学报,2017,12(02):179-187.[doi:10.11992/tis.201603005]
 CHENG Yang,JIANG Yizhang,QIAN Pengjiang,et al.A maximum entropy clustering algorithm based on knowledge transfer and its application to texture image segmentation[J].CAAI Transactions on Intelligent Systems,2017,12(02):179-187.[doi:10.11992/tis.201603005]
点击复制

知识迁移的极大熵聚类算法及其在纹理图像分割中的应用(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第12卷
期数:
2017年02期
页码:
179-187
栏目:
出版日期:
2017-04-25

文章信息/Info

Title:
A maximum entropy clustering algorithm based on knowledge transfer and its application to texture image segmentation
作者:
程旸 蒋亦樟 钱鹏江 王士同
江南大学 数字媒体学院, 江苏 无锡 214122
Author(s):
CHENG Yang JIANG Yizhang QIAN Pengjiang WANG Shitong
School of Digital Media, Jiangnan University, Wuxi 214122, China
关键词:
迁移学习中心迁移匹配极大熵聚类纹理图像分割抗噪性
Keywords:
transfer learningcenter transfer matchingmaximum entropy clusteringtexture image segmentationrobustness
分类号:
TP181
DOI:
10.11992/tis.201603005
摘要:
本文研究了一种新型的基于知识迁移的极大熵聚类技术。拟解决两大挑战性问题:1)如何从源域中选择合适的知识对目标域进行迁移学习以最终强化目标域的聚类性能;2)若存在源域聚类数与目标域聚类数不一致的情况时,该如何进行迁移聚类。为此提出一种全新的迁移聚类机制,即基于聚类中心的中心匹配迁移机制。进一步将该机制与经典极大熵聚类算法相融合提出了基于知识迁移的极大熵聚类算法(KT-MEC)。实验表明,在不同迁移场景下的纹理图像分割应用中,KT-MEC算法较很多现有聚类算法具有更高的精确度和抗噪性。
Abstract:
In this paper, we propose a novel technique for maximum entropy clustering (MEC) based on knowledge transfer. More specifically, we aim to solve the following two challenging questions. First, how can knowledge be appropriately selected from a source domain to enhance clustering performance in the target domain via transfer learning? Second, how best do we conduct transfer clustering if the number of clusters in the source domain and the target domain are inconsistent? To address these questions, we designed a new transfer clustering mechanism called the central matching transfer mechanism, which we based on clustering centers. Further, we developed a knowledge-transfer-based maximum entropy clustering (KT-MEC) algorithm by incorporating our mechanism into the classic MEC approach. Our experimental results reveal that our proposed KT-MEC algorithm achieves a higher level of accuracy and better noise immunity than many existing methods when applied to texture image segmentation in different transfer scenarios.

参考文献/References:

[1] ZHU Lin, CHUNG F L, WANG Shitong. Generalized fuzzy c-means clustering algorithm with improved fuzzy partitions[J]. IEEE transactions on systems, man, and cybernetics, part B (cybernetics), 2009, 39(3): 578-591.
[2] KIM S, YOO C D, NOWOZIN S, et al. Image segmentation usinghigher-order correlation clustering[J]. IEEE transactions on pattern analysis and machine intelligence, 2014, 36(9): 1761-1774.
[3] JIANG Yizhang, CHUNG F L, WANG Shitong, et al. Collaborative fuzzy clustering from multiple weighted views[J]. IEEE transactions on cybernetics, 2015, 45(4): 688-701.
[4] BEZDEK J C. Pattern recognition with fuzzy objective function algorithms[M]. USA: Springer Science & Business Media, 2013: 155-201.
[5] KRISHNAPURAM R, KELLER J M. A possibilistic approach to clustering[J]. IEEE transactions on fuzzy systems, 1993, 1(2): 98-110.
[6] KARAYIANNIS N B. MECA: maximum entropy clustering algorithm[C]//Proceedings of the Third IEEE Fuzzy Systems Conference. Orlando, USA: IEEE, 1994: 630-635.
[7] PAN S J, YANG Qiang. A survey on transfer learning[J]. IEEE transactions on knowledge and data engineering, 2010, 22(10): 1345-1359.
[8] DENG Zhaohong, CHOI K S, JIANG Yizhang, et al. Generalized hidden-mapping ridge regression, knowledge-leveraged inductive transfer learning for neural networks, fuzzy systems and kernel methods[J]. IEEE transactions on cybernetics, 2014, 44(12): 2585-2599.
[9] DENG Zhaohong, JIANG Yizhang, CHOI K S, et al. Knowledge-leverage-based TSK fuzzy system modeling[J]. IEEE transactions on neural networks and learning systems, 2013, 24(8): 1200-1212.
[10] ZHI Xiaobin, FAN Jiulun, ZHAO Feng. Fuzzy linear discriminant analysis-guided maximum entropy fuzzy clustering algorithm[J]. Pattern recognition, 2013, 46(6): 1604-1615.
[11] DAI Wenyuan, YANG Qiang, XUE Guirong, et al. Self-taught clustering[C]//Proceedings of the 25th International Conference on Machine Learning. New York, USA: ACM, 2008: 200-207.
[12] JIANG Wenhao, CHUNG F L. Transfer spectral clustering[M]//FLACH P A, DE BIE T, CRISTIANINI N. Machine Learning and Knowledge Discovery in Databases. Berlin Heidelberg: Springer, 2012: 789-803.
[13] 钱鹏江, 孙寿伟, 蒋亦樟, 等. 知识迁移极大熵聚类算法[J]. 控制与决策, 2015, 30(6): 1000-1006.QIAN Pengjiang, SUN Shouwei, JIANG Yizhang, et al. Knowledge transfer based maximum entropy clustering[J]. Control and decision, 2015, 30(6): 1000-1006.
[14] PEDRYCZ W, RAI P. Collaborative clustering with the use of Fuzzy C-Means and its quantification[J]. Fuzzy sets and systems, 2008, 159(18): 2399-2427.
[15] GU Quanquan, ZHOU Jie. Learning the shared subspace for multi-task clustering and transductive transfer classification[C]//Proceedings of the Ninth IEEE International Conference on Data Mining. Miami, USA: IEEE, 2009: 159-168.
[16] GU Quanquan, ZHOU Jie. Co-clustering on manifolds[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2009: 359-368.
[17] RANDEN T. Brodatz texture[EB/OL]. [2015-12-14]. http://www.ux.uis.no/~tranden/brodatz.html.
[18] DENG Zhaohong, CHOI K S, CHUNG F L, et al. Enhanced soft subspace clustering integrating within-cluster and between-cluster information[J]. Pattern recognition, 2010, 43(3): 767-781.
[19] KYRKI V, KAMARAINEN J K, K?LVI?INEN H. Simple Gabor feature space for invariant object recognition[J]. Pattern recognition letters, 2004, 25(3): 311-318.

相似文献/References:

[1]王晓初,包芳,王士同,等.基于最小最大概率机的迁移学习分类算法[J].智能系统学报,2016,11(1):84.[doi:10.11992/tis.201505024]
 WANG Xiaochu,BAO Fang,WANG Shitong,et al.Transfer learning classification algorithms based on minimax probability machine[J].CAAI Transactions on Intelligent Systems,2016,11(02):84.[doi:10.11992/tis.201505024]
[2]王跃,杨燕,王红军.一种基于少量标签的改进迁移模糊聚类[J].智能系统学报,2016,11(3):310.[doi:10.11992/tis.201603046]
 WANG Yue,YANG Yan,WANG Hongjun.An improved transfer fuzzy clustering with few labels[J].CAAI Transactions on Intelligent Systems,2016,11(02):310.[doi:10.11992/tis.201603046]
[3]许敏,史荧中,葛洪伟,等.一种具有迁移学习能力的RBF-NN算法及其应用[J].智能系统学报,2018,13(06):959.[doi:10.11992/tis.201705021]
 XU Min,SHI Yingzhong,GE Hongwei,et al.A RBF-NN algorithm with transfer learning ability and its application[J].CAAI Transactions on Intelligent Systems,2018,13(02):959.[doi:10.11992/tis.201705021]
[4]莫宏伟,汪海波.基于Faster R-CNN的人体行为检测研究[J].智能系统学报,2018,13(06):967.[doi:10.11992/tis.201801025]
 MO Hongwei,WANG Haibo.Research on human behavior detection based on Faster R-CNN[J].CAAI Transactions on Intelligent Systems,2018,13(02):967.[doi:10.11992/tis.201801025]
[5]凌彤,杨琬琪,杨明.利用多模态U形网络的CT图像前列腺分割[J].智能系统学报,2018,13(06):981.[doi:10.11992/tis.201806012]
 LING Tong,YANG Wanqi,YANG Ming.Prostate segmentation in CT images with multimodal U-net[J].CAAI Transactions on Intelligent Systems,2018,13(02):981.[doi:10.11992/tis.201806012]
[6]余鹰,王乐为,吴新念,等.基于改进卷积神经网络的多标记分类算法[J].智能系统学报,2019,14(03):566.[doi:10.11992/tis.201804056]
 YU Ying,WANG Lewei,WU Xinnian,et al.A multi-label classification algorithm based on an improved convolutional neural network[J].CAAI Transactions on Intelligent Systems,2019,14(02):566.[doi:10.11992/tis.201804056]
[7]洪雁飞,魏本征,刘川,等.基于深度学习的椎间孔狭窄自动多分级研究[J].智能系统学报,2019,14(04):708.[doi:10.11992/tis.201806015]
 HONG Yanfei,WEI Benzheng,LIU Chuan,et al.Deep learning based automatic multi-classification algorithm for intervertebral foraminal stenosis[J].CAAI Transactions on Intelligent Systems,2019,14(02):708.[doi:10.11992/tis.201806015]
[8]鲁绪正,蔡恒进,林莉.基于Capsule网络的甲骨文构件识别方法[J].智能系统学报,2020,15(2):243.[doi:10.11992/tis.201904069]
 LU Xuzheng,CAI Hengjin,LIN Li.Recognition of Oracle Radical based on the Capsule network[J].CAAI Transactions on Intelligent Systems,2020,15(02):243.[doi:10.11992/tis.201904069]

备注/Memo

备注/Memo:
收稿日期:2016-3-4;改回日期:。
基金项目:国家自然科学基金项目(61572236);江苏省自然科学基金项目(BK20160187);江苏省产学研前瞻性联合研究项目(BY2013015-02).
作者简介:程旸,男,1991年生,硕士研究生,主要研究方向为人工智能、模式识别、数据挖掘;蒋亦樟,男,1988年生,博士,讲师,主要研究方向为人工智能、模式识别、模糊系统;钱鹏江,男,1979年生,副教授,博士,主要研究方向为模式识别、医学图像处理、大数据。
通讯作者:蒋亦樟. E-mail:jyz0512@163.com.
更新日期/Last Update: 1900-01-01