[1]赵玉新,赵廷.海底声呐图像智能底质分类技术研究综述[J].智能系统学报,2020,15(3):587-600.[doi:10.11992/tis.202004026]
 ZHAO Yuxin,ZHAO Ting.Survey of the intelligent seabed sediment classification technology based on sonar images[J].CAAI Transactions on Intelligent Systems,2020,15(3):587-600.[doi:10.11992/tis.202004026]
点击复制

海底声呐图像智能底质分类技术研究综述(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第15卷
期数:
2020年3期
页码:
587-600
栏目:
人工智能院长论坛
出版日期:
2020-05-05

文章信息/Info

Title:
Survey of the intelligent seabed sediment classification technology based on sonar images
作者:
赵玉新 赵廷
哈尔滨工程大学 自动化学院,黑龙江 哈尔滨 150001
Author(s):
ZHAO Yuxin ZHAO Ting
College of Automation, Harbin Engineering University, Harbin 150001, China
关键词:
声学探测声呐图像底质类型特征提取图像分类监督学习无监督学习深度学习卷积神经网络海底底质分类
Keywords:
acoustic detectionsonar imagesediment typefeature extractionimage classificationsupervized learningunsupervized learningdeep learningconvolutional neural networkseabed sediment classification
分类号:
TP753
DOI:
10.11992/tis.202004026
摘要:
海底声呐图像底质分类技术是指利用多波束、侧扫声呐等设备获取海底图像进行浅表层地质属性信息的反演和预测。综合运用水声学、图像处理以及机器学习的相关理论,声学海底底质分类技术能够快速、准确地识别海底底质类型。通过回顾国内外发展历程,对利用声学图像进行海底底质分类的关键技术进行了总结,从声学海底底质分类的关系模型、海底声呐图像的特征表达和分类模型构建三个方面介绍了领域内的研究进展和主要方法,重点分析了不同模型和方法的原理、技术特点和适用场合,并结合卷积神经网络对深度学习方法在海底底质分类中的应用进行了讨论。最后,对海底声呐图像底质分类技术的研究方向和发展趋势进行了归纳和展望。
Abstract:
Image-based acoustic seabed sediment classification refers to the technology of inversion and prediction of the marine geological attributes of the shallow strata using seabed sonar image obtained using a multi-beam, side-scan sonar. As the multidisciplinary branch of oceanology, this technology is able to quickly identify a sediment type based on the relevant knowledge of underwater acoustics, image processing, and machine learning. Based on the review on the history and development of the technology at home and abroad, this article summarizes the key techniques in the framework of seabed sediment classification using sonar image and makes an introduction to the progress in research and main algorithms used in the domain, including the geoacoustic relationship model, the feature expression of the seabed sonar image, and the building of classification model. The emphasis is put on the analysis of the principles, technical features, and applications for various models and algorithms. Deep learning is also discussed for exploring proper application in the acoustic seabed classification with the case of convolutional neural network. The deep learning algorithms are applied on the sonar images and analyzed . Finally, acoustic image-based seabed sediment classification is completed and forecast is done.

参考文献/References:

[1] 金翔龙. 海洋地球物理研究与海底探测声学技术的发展[J]. 地球物理学进展, 2007, 22(4): 1243-1249
JIN Xianglong. The development of research in marine geophysics and acoustic technology for submarine exploration[J]. Progress in geophysics, 2007, 22(4): 1243-1249
[2] 路晓磊, 张丽婷, 王芳, 等. 海底声学探测技术装备综述[J]. 海洋开发与管理, 2018, 35(6): 91-94
LU Xiaolei, ZHANG Liting, WANG Fang, et al. Summary of submarine acoustic detection technology and equipment[J]. Ocean development and management, 2018, 35(6): 91-94
[3] 庞新明, 赵明辉, 刘思青, 等. 复杂地质结构OBS地震剖面震相识别方法[J]. 地球物理学报, 2019, 62(9): 3482-3491
PANG Xinming, ZHAO Minghui, LIU Siqing, et al. Seismic phases identification in OBS seismic record sections through the complex geological structure[J]. Chinese journal of geophysics, 2019, 62(9): 3482-3491
[4] BROWN C J, BEAUDOIN J, BRISSETTE M, et al. Multispectral multibeam echo sounder backscatter as a tool for improved seafloor characterization[J]. Geosciences, 2019, 9(3): 126.
[5] SHIH C C, HORNG M F, TSENG Y R, et al. An adaptive bottom tracking algorithm for side-scan sonar seabed mapping[C]//Proceedings of 2019 IEEE Underwater Technology. Taiwan, China, 2019: 1-7.
[6] TAN Cheng, ZHANG Xuebo, YANG Peixuan, et al. A novel sub-bottom profiler and signal processor[J]. Sensors, 2019, 19(22): 5052.
[7] 张炳生. 水下声学高精度定位算法的研究[D]. 西安: 长安大学, 2019.
ZHANG Bingsheng. Research on high precision positioning algorithm for underwater acoustics[D]. Xi’an: Chang’an University, 2019.
[8] 耿雪樵, 徐行, 刘方兰, 等. 我国海底取样设备的现状与发展趋势[J]. 地质装备, 2009, 10(4): 11-16
GENG Xueqiao, XU Xing, LIU Fanglan, et al. The current status and development trends of marine sampling equipment[J]. Equipment for geotechnical engineering, 2009, 10(4): 11-16
[9] 补家武, 鄢泰宁, 昌志军. 海底取样技术发展现状及工作原理概述——海底取样技术专题之一[J]. 探矿工程(岩土钻掘工程), 2001(2): 44-48
BU Jiawu, YAN Taining, CHANG Zhijun. Introduction to the status quo and operating principle of seabed samplers——Part Ⅰ of the subject on seabed sampling[J]. Exploration engineering (Drilling & tunneling), 2001(2): 44-48
[10] 侯正瑜, 郭常升, 王景强, 等. 一种新型海底沉积物声学原位测量系统的研制及应用[J]. 地球物理学报, 2015, 58(6): 1976-1984
HOU Zhengyu, GUO Changsheng, WANG Jingqiang, et al. Development and application of a new type in-situ acoustic measurement system of seafloor sediments[J]. Chinese journal of geophysics, 2015, 58(6): 1976-1984
[11] 陶春辉, 王东, 金翔龙. 海底沉积物声学特性和原位测试技术[M]. 北京: 海洋出版社, 2006.
[12] 唐秋华, 纪雪, 丁继胜, 等. 多波束声学底质分类研究进展与展望[J]. 海洋科学进展, 2019, 37(1): 1-10
TANG Qiuhua, JI Xue, DING Jisheng, et al. Research progress and prospect of acoustic seabed classification using multibeam echo sounder[J]. Advances in marine science, 2019, 37(1): 1-10
[13] MANIK H M, NISHIMORI Y, NISHIYAMA Y, et al. Developing signal processing of echo sounder for measuring acoustic backscatter[J]. IOP conference series: earth and environmental science, 2020, 429: 012034.
[14] GAIDA T C, MOHAMMADLOO T H, SNELLEN M, et al. Mapping the seabed and shallow subsurface with multi-frequency multibeam echosounders[J]. Remote sensing, 2020, 12(1): 52.
[15] YAN Jun, MENG Junxia, ZHAO Jianhu. Real-time bottom tracking using side scan sonar data through one-dimensional convolutional neural networks[J]. Remote sensing, 2020, 12(1): 37.
[16] 周杨锐, 吴秋云, 董明明, 等. 深水工程勘察技术研究现状与展望[J]. 中国海上油气, 2017, 29(6): 158-166
ZHOU Yangrui, WU Qiuyun, DONG Mingming, et al. Current status and development outlook of deep water geotechnical investigation and survey technology[J]. China offshore oil and gas, 2017, 29(6): 158-166
[17] LI W N, SMITH D T. Identification of sea-bottom sediments by a ship underway[J]. Geophysical prospecting, 1966, 14(1): 45-47.
[18] SMITH D T, LI W N. Echo-sounding and sea-floor sediments[J]. Marine geology, 1966, 4(5): 353-364.
[19] HAMILTON E L. Geoacoustic models of the sea floor[M]//HAMPTON L. Physics of Sound in Marine Sediments. Boston: Springer, 1974: 181-221.
[20] HAMILTON E L. Prediction of deep-sea sediment properties: state-of-the-art[M]//INDERBITZEN A L. Deep-Sea Sediments: Physical and Mechanical Properties. Boston: Springer, 1974: 1-43.
[21] 郭永刚. 海底声参数反演研究与应用[D]. 青岛: 中国海洋大学, 2004.
GUO Yonggang. Research and application of seafloor parameters inversion[D]. Qingdao: Ocean University of China, 2004.
[22] 蒯多杰, 王长红, 冯雷, 等. 海底回波空间相关特性研究[J]. 声学学报, 2009, 34(5): 385-395
KUAI Duojie, WANG Changhong, FENG Lei, et al. Spatial correlation analysis of sea-bottom backscattering[J]. Acta acustica, 2009, 34(5): 385-395
[23] 杨词银, 许枫, 魏建江. 基于邻域灰阶共生矩阵的海底沉积物分类[J]. 哈尔滨工程大学学报, 2005, 26(5): 561-564
YANG Ciyin, XU Feng, WEI Jianjiang. Seafloor sediment classification using a neighborhood gray level co-occurrence matrix[J]. Journal of Harbin Engineering University, 2005, 26(5): 561-564
[24] 罗忠辉, 曾新红, 杜灿谊, 等. 海底沉积物声学特征定量分析及其智能分类研究[J]. 海洋技术学报, 2015, 34(1): 43-49
LUO Zhonghui, ZENG Xinhong, DU Canyi, et al. Quantitative analysis and intelligent classification for the acoustic characteristics of seafloor sediments[J]. Journal of ocean technology, 2015, 34(1): 43-49
[25] BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range[J]. The journal of the acoustical society of America, 1956, 28(2): 179-191.
[26] 乔文孝, 吴文虬, 王耀俊. 多孔介质声学研究进展[J]. 物理学进展, 1996, 16(3/4): 386-395
QIAO Wenxiao, WU Wenqiu, WANG Yaojun. Major progress in porous medium acoustics[J]. Progress in physics, 1996, 16(3/4): 386-395
[27] HAMILTON E L. Geoacoustic modeling of the sea floor[J]. The journal of the acoustical society of America, 1980, 68(5): 1313-1340.
[28] HAMILTON E L, BACHMAN R T. Sound velocity and related properties of marine sediments[J]. The journal of the acoustical society of America, 1982, 72(6): 1891-1904.
[29] HAMILTON L J. Acoustic seabed classification systems[R]. Defence science and technology organisation Victoria: DSTO Aeronautical and Maritime Research Laboratory, 2001.
[30] JACKSON D R, BAIRD A M, CRISP J J, et al. High-frequency bottom backscatter measurements in shallow water[J]. The journal of the acoustical society of America, 1986, 80(4): 1188-1199.
[31] 徐超. 海底散射模型与多波束混响信号统计特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2009.
XU Chao. Research of seafloor scattering model and statistical characteristic of multibeam reverberation signal[D]. Harbin: Harbin Engineering University, 2009.
[32] 杨玉春. 基于Jackson模型的高频海底散射研究[J]. 声学与电子工程, 2015(4): 33-36
YANG Yuchuan. Research of high-frequency seabed scattering based on Jackson model[J]. Acoustics and electronics engineering, 2015(4): 33-36
[33] JIANG Yongmin, CHAPMAN N R, GERSTOFT P. Estimation of geoacoustic properties of marine sediment using a hybrid differential evolution inversion method[J]. IEEE journal of oceanic engineering, 2010, 35(1): 59-69.
[34] SCHOCK S G. A method for estimating the physical and acoustic properties of the sea bed using chirp sonar data[J]. IEEE journal of oceanic engineering, 2004, 29(4): 1200-1217.
[35] SIEMES K, SNELLEN M, AMIRI-SIMKOOEI A R, et al. Predicting spatial variability of sediment properties from hydrographic data for geoacoustic inversion[J]. IEEE journal of oceanic engineering, 2010, 35(4): 766-778.
[36] 周天, 李海森, 朱建军, 等. 利用多角度海底反向散射信号进行地声参数估计[J]. 物理学报, 2014, 63(8): 084302
ZHOU Tian, LI Haisen, ZHU Jianjun, et al. A geoacoustic estimation scheme based on bottom backscatter signals from multiple angles[J]. Acta physica sinica, 2014, 63(8): 084302
[37] 金国亮, 张仁和. 由浅海混响反演海底反射和散射系数[J]. 声学学报, 1996, 21(S1): 565-572
JIN Guoliang, ZHANG Renhe. Inversion of shallow water reverberation for bottom reflection and scattering coefficients[J]. Acta Acustica, 1996, 21(S1): 565-572
[38] BENNETT R H, LI H, RICHARDSON M D, et al. Geoacoustic and geotechnical characterization of surficial marine sediments by in situ probe and remote sensing techniques[M]//GEYER R A. CRC Handbook of Geophysical Exploration at Sea. 2nd ed. Boca Raton: CRC Press, 1992: 295-350.
[39] CLARKE J H. Toward remote seafloor classification using the angular response of acoustic backscattering: a case study from multiple overlapping GLORIA data[J]. IEEE journal of oceanic engineering, 1994, 19(1): 112-127.
[40] HANIOTIS S, CERVENKA P, NEGREIRA C, et al. Seafloor segmentation using angular backscatter responses obtained at sea with a forward-looking sonar system[J]. Applied acoustics, 2015, 89: 306-319.
[41] PACE N G, DYER C M. Machine classification of sedimentary sea bottoms[J]. IEEE transactions on geoscience electronics, 1979, 17(3): 52-56.
[42] REUT Z, PACE N, HEATON M J P. Computer classification of sea beds by sonar[J]. Nature, 1985, 314(6010): 426-428.
[43] HUSEBY R B, MILVANG O, SOLBERG A S, et al. Seabed classification from multibeam echosounder data using statistical methods[C]//Proceedings of OCEANS1993. Victoria, Canada, 1993: III/229-III/233.
[44] ALEXANDROU D, PANTZARTZIS D. Seafloor classification with neural networks[C]//Proceedings of OCEANS1990. Washington, USA, 1990: 18-23.
[45] GAO Wei. Sediment classification based on least-squares support vector machine and phase-plane analysis[C]//Proceedings of 2009 Fifth International Conference on Natural Computation. Tianjin, China, 2009: 560-564.
[46] DIESING M, GREEN S L, STEPHENS D, et al. Mapping seabed sediments: comparison of manual, geostatistical, object-based image analysis and machine learning approaches[J]. Continental shelf research, 2014, 84: 107-119.
[47] 郑红霞,张训华. 海底底质分类方法综述[C]//中国地球物理学会第二十九届年会. 昆明, 中国, 2013: 5.
ZHENG Hongxia, ZHANG Xxunhua.Review of seabed sediment classification[C]//The 29th annual conference of the Chinese geophysical society. Kunming, China, 2013: 5.
[48] 孟金生, 关定华. 正入射声脉冲法估测海底表层沉积物衰减系数[J]. 海洋学报, 1984, 6(6): 867-873
MENG Jinsheng, GUAN Dinghua. A normal incidence-based acoustic pulse method for the estimation of seafloor sediment attenuation coefficients[J]. Acta oceanologica sinica (Chinese version), 1984, 6(6): 867-873
[49] 周志愚, 孟金生. 由爆炸声反射波遥测海底表面稀软薄层的某些参数[J]. 热带海洋, 1985, 4(2): 38-43
ZHOU Zhiyu, MENG Jinsheng. Telemetering of some parameters of the soft and thin surface layer of the sea floor by using reflected explosive waves[J]. Tropic oceanology, 1985, 4(2): 38-43
[50] 孟金生, 关定华. 海底沉积物的声学方法分类[J]. 声学学报, 1982, 7(6): 337-343
MENG Jinsheng, GUAN Dinghua. Acoustical classification of sea floor sediments[J]. Acta acustica, 1982, 7(6): 337-343
[51] PRAGER B T, CAUGHEY D A, POECKERT R H. Bottom classification: operational results from QTC view[C]//Proceedings of OCEANS1995. MTS/IEEE. San Diego, USA, 1995: 1827-1835.
[52] 万宏俊. 基于声纳回波波形特征的海底底质类型分类方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
WAN Hongjun. Research on classification method of submarine substrate type based on characteristics of sonar wave[D]. Harbin: Harbin Engineering University, 2019.
[53] 刘光宇. 基于声纳图像的目标识别技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2009.
LIU Guangyu. Target recognition technology research based on sonar image[D]. Harbin: Harbin Engineering University, 2009.
[54] 罗伟东, 郭军. 基于多波束背向散射数据的海底底质分类[J]. 海洋地质前沿, 2017, 33(8): 57-62
LUO Weidong, GUO Jun. Seabed sediment classification based on multibeam backscatter data[J]. Marine geology frontiers, 2017, 33(8): 57-62
[55] FAKIRIS E, PAPATHEODOROU G, GERAGA M, et al. An automatic target detection algorithm for swath sonar backscatter imagery, using image texture and independent component analysis[J]. Remote sensing, 2016, 8(5): 373.
[56] ABBAS Z, REHMAN M U, NAJAM S, et al. An efficient gray-level co-occurrence matrix (GLCM) based approach towards classification of skin lesion[C]//Proceedings of 2019 Amity International Conference on Artificial Intelligence. Dubai, United Arab Emirates, 2019: 317-320.
[57] 杨词银, 许枫. 基于分形维的底质分类[J]. 海洋测绘, 2004, 24(6): 5-8
YANG Ciyin, XU Feng. Seabed material classification based on fractal dimension[J]. Hydrographic surveying and charting, 2004, 24(6): 5-8
[58] NAYAK S R, MISHRA J, PALAI G. Analysing roughness of surface through fractal dimension: a review[J]. Image and vision computing, 2019, 89: 21-34.
[59] PACE N, GAO H. Swathe seabed classification[J]. IEEE journal of oceanic engineering, 1988, 13(2): 83-90.
[60] 杨蕊. 基于侧扫声呐图像的底质特征提取及分类技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
YANG Rui. Research on seabed sediment feature extraction and classification based on side scan sonar image[D]. Harbin: Harbin Engineering University, 2018.
[61] HATANAKA K, WADA M. An algorithm based on the wavelet transform for the classification of seabed textures[C]//Proceedings of OCEANS 2010 MTS/IEEE. Seattle, USA, 2010: 1-6.
[62] 石丹, 李庆武, 范新南, 等. 曲波变换域侧扫声呐图像海底底质分类[J]. 应用科学学报, 2009, 27(5): 498-501
SHI Dan, LI Qingwu, FAN Xinnan, et al. Seafloor sediments classification of side-scan sonar imagery in fast discrete curvelet transform domain[J]. Journal of applied sciences, 2009, 27(5): 498-501
[63] 李庆武, 石丹, 霍冠英. 基于Contourlet变换的海底声呐图像特征提取与分类[J]. 海洋学报, 2011, 33(5): 163-168
LI Qingwu, SHI Dan, HUO Guanying. Feature extraction and classification of seabed sonar images based on contourlet transform[J]. Acta oceanologica sinica, 2011, 33(5): 163-168
[64] 付楠. 基于声呐图像特征的海底底质类型分类方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
FU Nan. Research on classification method of submarine substrate type based on characteristics of sonar image[D]. Harbin: Harbin Engineering University, 2019.
[65] ZHAO Ting, LAZENDI? S, ZHAO Yuxin, et al. Classification of Multibeam Sonar Image Using the Weyl Transform[C]//Proceedings of International Conference on Image Processing and Communications. Bydgoszcz, Poland, 2020: 206-213.
[66] PRESTON J. Automated acoustic seabed classification of multibeam images of Stanton Banks[J]. Applied acoustics, 2009, 70(10): 1277-1287.
[67] KOOP L, AMIRI-SIMKOOEI A, VAN DER REIJDEN K, et al. Seafloor Classification in a Sand Wave Environment on the Dutch Continental Shelf Using Multibeam Echosounder Backscatter Data[J]. Geosciences, 2019, 9(3): 142.
[68] 纪雪. 基于多波束数据的海底底质及地形复杂度分类研究[D]. 青岛: 国家海洋局第一海洋研究所, 2017.
JI Xue. Classification of seabed sediment and terrain complexity based on multibeam data[D]. Qingdao: First Institute of Oceanography, Ministry of Natural Resources of China, 2017.
[69] PRESTON J M, CHRISTNEY A C, BLOOMER S F, et al. Seabed classification of multibeam sonar images[C]//Proceedings of MTS/IEEE Oceans 2001. Honolulu, USA, 2001: 2616-2623.
[70] 徐超. 多波束测深声呐海底底质分类技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2014.
XU Chao. Study on seabed classification technology based on multibeam bathymetry sonar[D]. Harbin: Harbin Engineering University, 2014.
[71] ATALLAH L, SMITH P J P. Automatic seabed classification by the analysis of sidescan sonar and bathymetric imagery[J]. IEE proceedings-radar, sonar and navigation, 2004, 151(5): 327-336.
[72] JAVIDAN R, MASNADI-SHIRAZI M A, AZIMIFAR Z. Contourlet-based acoustic seabed ground discrimination system[C]//Proceedings of the 3rd International Conference on Information and Communication Technologies: From Theory to Applications. Damascus, Syria, 2008: 1-6.
[73] SOMVANSHI M, CHAVAN P, TAMBADE S, et al. A review of machine learning techniques using decision tree and support vector machine[C]//Proceedings of 2016 International Conference on Computing Communication Control and automation. Pune, India, 2016: 1-7.
[74] 徐超, 李海森, 王川, 等. 基于合成核SVM的多波束海底声图像底质分类研究[J]. 地球物理学进展, 2014, 29(5): 2437-2442
XU Chao, LI Haisen, WANG Chuan, et al. Seabed classification of multibeam seabed acoustic image based on composite kernel SVM[J]. Progress in geophysics, 2014, 29(5): 2437-2442
[75] LI Jin, HEAP A D, POTTER A, et al. Can we improve the spatial predictions of seabed sediments? A case study of spatial interpolation of mud content across the southwest Australian margin[J]. Continental shelf research, 2011, 31(13): 1365-1376.
[76] HASAN R C, IERODIACONOU D, MONK J. Evaluation of four supervised learning methods for benthic habitat mapping using backscatter from multi-beam sonar[J]. Remote sensing, 2012, 4(11): 3427-3443.
[77] ISLAMSU, ABBAS A W, AHMAD A, et al. Parameter investigation of artificial neural network and support vector machine for image classification[C]//Proceedings of the 14th International Bhurban Conference on Applied Sciences and Technology. Islamabad, Pakistan, 2017: 795-798.
[78] 焦李成, 杨淑媛, 刘芳, 等. 神经网络七十年: 回顾与展望[J]. 计算机学报, 2016, 39(8): 1697-1716
JIAO Licheng, YANG Shuyuan, LIU Fang, et al. Seventy years beyond neural networks: retrospect and prospect[J]. Chinese journal of computers, 2016, 39(8): 1697-1716
[79] 阳凡林, 刘经南, 赵建虎, 等. 基于遗传算法的BP网络实现海底底质分类[J]. 测绘科学, 2006, 31(2): 111-114
YANG Fanlin, LIU Jingnan, ZHAO Jianhu, et al. Seabed texture classification using BP neural network based on GA[J]. Science of surveying and mapping, 2006, 31(2): 111-114
[80] 董骐瑞. k-均值聚类算法的改进与实现[D]. 长春: 吉林大学, 2015.
DONG Qirui. Improvements and implementation of k-means clustering algorithm[D]. Changchun: Jilin University, 2015.
[81] 吕良, 金绍华, 边刚, 等. K-均值聚类算法在多波束底质分类中的应用[J]. 海洋测绘, 2018, 38(3): 64-68
LV Liang, JIN Shaohua, BIAN Gang, et al. The application of K-means clustering analysis algorithm in multibeam seafloor classification[J]. Hydrographic surveying and charting, 2018, 38(3): 64-68
[82] 王晓燕. K-均值算法与自组织神经网络算法的改进研究及应用[D]. 太原: 中北大学, 2017.
WANG Xiaoyan. Research on improved K-means and self-organizing map neural networks and their applications[D]. Taiyuan: North University of China, 2017.
[83] MARSH I, BROWN C. Neural network classification of multibeam backscatter and bathymetry data from Stanton Bank (Area IV)[J]. Applied acoustics, 2009, 70(10): 1269-1276.
[84] YIN T, THAN K M M, TUN W. Face recognition system using self-organizing feature map and appearance-based approach[J]. International journal of trend in scientific research and development, 2019, 3(5): 1598-1603.
[85] 唐秋华, 刘保华, 陈永奇, 等. 基于自组织神经网络的声学底质分类研究[J]. 声学技术, 2007, 26(3): 380-384
TANG Qiuhua, LIU Baohua, LIU Yongqi, et al. Acoustic seafloor classification using self-organizing map neural network[J]. Technical acoustics, 2007, 26(3): 380-384
[86] 郭军, 马金凤. 基于K-L变换的自组织竞争神经网络在海底底质分类中的应用[J]. 测绘工程, 2013, 22(1): 51-54
GUO Jun, MA Jinfeng. Self-organization competition neural network based on K-L transform in seafloor classification[J]. Engineering of surveying and mapping, 2013, 22(1): 51-54
[87] ZHAO Jianhu, ZHANG Hongmei. Seabed classification based on SOFM neural network[C]//2008 International Conference on Computer Science and Software Engineering. Wuhan, China, 2008: 902-905.
[88] 焦佳. 基于深度学习的水下声呐图像分类方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
JIAO Jia. Research on underwater sonar image classification method based on deep learning[D]. Harbin: Harbin Engineering University, 2018.
[89] WILLIAMS D P. On the use of tiny convolutional neural networks for human-expert-level classification performance in sonar imagery[J/OL]. IEEE journal of oceanic engineering (2020-02-05). https://ieeexplore.ieee.org/document/8984248.
[90] 刘韦伯. 基于深度学习的水下目标图像识别方法研究[D]. 成都: 电子科技大学, 2019.
LIU Weibo. Research on deep learning-based underwater target image recognition method[D]. Chengdu: University of Electronic Science and Technology of China, 2019.

备注/Memo

备注/Memo:
收稿日期:2020-04-24。
基金项目:国家重点基础研究发展计划(613317);国家自然科学基金面上项目(41676088)
作者简介:赵玉新,教授,博士生导师,工信部高技术船舶通信导航与智能系统专业组秘书长,中国航海学会理事,中国运筹学会决策科学分会常务理事,IET(英国工程技术学会)Fellow,IEEE高级会员,主要研究方向为水下导航技术及应用、业务化海洋学、智能航海技术。主持国防973课题、国家重大专项课题、国家自然科学基金等多个科研项目。入选“长江学者奖励计划”青年学者,国家“万人计划”青年拔尖人才,龙江科技英才。发表学术论文100余篇。出版学术著作4部;赵廷,博士研究生,主要研究方向为海底探测、海洋遥感、图像处理、机器学习
通讯作者:赵廷.E-mail:zhaoting@hrbeu.edu.cn
更新日期/Last Update: 1900-01-01