[1]孙劲光,邓智硕.局部特征脸型分类方法[J].智能系统学报,2017,12(01):104-109.[doi:10.11992/tis.201605021]
 SUN Jinguang,DENG Zhishuo.Local feature facial classification method[J].CAAI Transactions on Intelligent Systems,2017,12(01):104-109.[doi:10.11992/tis.201605021]
点击复制

局部特征脸型分类方法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第12卷
期数:
2017年01期
页码:
104-109
栏目:
出版日期:
2017-02-25

文章信息/Info

Title:
Local feature facial classification method
作者:
孙劲光 邓智硕
辽宁工程技术大学 电子与信息工程学院, 辽宁 葫芦岛 125105
Author(s):
SUN Jinguang DENG Zhishuo
School of Electronic and Information Engineering, Liaoning Technical University, Huludao 125105, China
关键词:
脸型分类圆形邻域特征编码局部特征表达多分类支持向量机
Keywords:
facial classificationround-neighborhoodfeature codinglocal feature representationmulti classification support vector machineface
分类号:
TP391.41
DOI:
10.11992/tis.201605021
摘要:
本文针对传统脸型分类算法特征点定位不准和过度依赖轮廓曲线的问题,提出了一种人脸轮廓圆形邻域局部特征表达方式和脸型分类模型。首先,初步定位脸型轮廓特征点;然后,在特征点周围选取三重八连通圆形邻域,通过计算一级邻域、拓展邻域与中心区域间的纹理变化,生成二进制编码序列,构造脸型局部特征向量;最后,设计OVO-RBF-SVM多分类模型,实现脸型分类。本文方法在CAS-PEAL人脸库上进行脸型类型判别,获得了94.28%的准确率;在相同情况下,分别与基于主动形状模型和基于下颌曲线模型的脸型类型判别方法进行对比,准确率分别提高了6.64%和6.58%。本文所研究的方法在一定程度上解决了特征点定位相对不准确导致误差增加的问题,同时尽可能多利用图片原始信息,保证轮廓特征提取的准确率,具有较强的鲁棒性。通过实验证明本文方法适用于脸型分类。
Abstract:
Considering the problems where the feature points of traditional facial classification algorithms are not located in the position of the actual feature points and are heavily dependent upon the contour curve, a facial contour circular neighborhood local feature expression and a facial classification model were proposed.First, the preliminary facial contour feature points were located and then around the feature points, the triple eight connected round-neighborhood was selected.By calculating a neighborhood level and expanding the neighborhood with the central area between the texture changes, the binary code sequence was generated and the tectonic facial local feature vectors can be created. Then, the faces were classified by designing the OVO-RBF-SVM classification model. The experiment was conducted on the CAS-PEAL face library for facial contour feature discrimination, achieving 94.28% accuracy rate; under the same circumstances, the face-type discrimination methods which are based on the active shape model and jaw curve model were compared, and the accuracy rate raised 6.64% and 6.58%, respectively. To a certain extent, the method proposed in this paper solves the problem where the error increases when the location of the feature points are relatively inaccurate, and at the same time, the original picture information is utilized as much as possible, to ensure the accuracy of the contour feature extraction, which has strong robustness. The experimental results show that this method is suitable for facial classification.

参考文献/References:

[1] LUO Ping, WANG Xiaogang, TANG Xiaoou. Hierarchical face parsing via deep learning[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA, 2012: 2480-2487.
[2] SUN Yi, WANG Xiaogang, TANG Xiaoou. Deep learning face representation from predicting 10,000 classes[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA, 2014: 1891-1898.
[3] LU Chaochao, ZHAO Deli, TANG Xiaoou. Face recognition using face patch networks[C]//Proceedings of 2013 IEEE International Conference on Computer Vision. Sydney, NSW, Australia, 2013: 3288-3295.
[4] ZENG Xingyu, OUYANG Wanli, WANG Xiaogang. Multi-stage contextual deep learning for pedestrian detection[C]//Proceedings of 2013 IEEE International Conference on Computer Vision. Sydney, VIC, Australia, 2013: 121-128.
[5] SUN Yi, WANG Xiaogang, TANG Xiaoou. Hybrid deep learning for face verification[C]//Proceedings of 2013 IEEE International Conference on Computer Vision. Sydney, NSW, Australia, 2013: 1489-1496.
[6] 王俊艳, 苏光大. 基于下颌轮廓线的人脸分类方法[J]. 红外与激光工程, 2004, 32(2): 159-163. WANG Junyan, SU Guangda. Human face classification method based on chin contour[J]. Infrared and laser engineering, 2004, 32(2): 159-163.
[7] 凌旭峰, 杨杰, 杨勇. 基于轮廓线曲率特征的人脸分类及识别[J]. 红外与激光工程, 1999, 28(4): 37-39.LING Xufeng, YANG Jie, YANG Yong. Curvature-feature-based method for human face classification and recognition[J]. Infrared and laser engineering, 1999, 28(4): 37-39.
[8] 杜立强, 贾鹏, 周宗潭, 等. 基于主动形状模型的人脸脸型自动分类算法[J]. 计算机应用, 2009, 29(10): 2710-2712, 2715.DU Liqiang, JIA Peng, ZHOU Zongtan, et al. Human face shape classification method based on active shape model[J]. Journal of computer applications, 2009, 29(10): 2710-2712, 2715.
[9] KIM S W, OOMMEN B J. On using prototype reduction schemes to optimize kernel-based fisher discriminant analysis[J]. IEEE transactions on systems, man, and cybernetics, part B (cybernetics), 2008, 38(2): 564-570.
[10] GAO Wen, GAO Bo, SHAN Shiguang, et al. The CAS-PEAL large-scale Chinese face database and baseline evaluations[J]. IEEE transactions on systems, man, and cybernetics—part A: systems and humans, 2008, 38(1): 149-161.
[11] SARAKON P, CHAROENPONG T, CHAROENSIRIWATH S. Face shape classification from 3D human data by using SVM[C]//Proceedings of the 7th Biomedical Engineering International Conference. Fukuoka, Japan, 2014: 1-5.

备注/Memo

备注/Memo:
收稿日期:2016-5-23;改回日期:。
基金项目:国家自然科学基金青年基金项目(61401185).
作者简介:孙劲光,女,1962年生,博士,教授,博士生导师,计算机学会(CCF)会员(21314S),主要研究方向为计算机图像处理、计算机图形学、知识工程;邓智硕,男,1992年生,硕士研究生,研究方向为计算机图像处理。
通讯作者:邓智硕.E-mail:deng2006zs@163.com.
更新日期/Last Update: 1900-01-01