[1]李海峰,杜军平.颜色特征的图像分类技术研究[J].智能系统学报,2008,3(02):155-158.
 LI Hai-feng,DU Jun-ping.Image classification technology based on color features[J].CAAI Transactions on Intelligent Systems,2008,3(02):155-158.
点击复制

颜色特征的图像分类技术研究(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第3卷
期数:
2008年02期
页码:
155-158
栏目:
出版日期:
2008-04-25

文章信息/Info

Title:
Image classification technology based on color features
文章编号:
1673-4785(2008)02-0155-04
作者:
李海峰1杜军平2
1. 北京工商大学计算机学院, 北京100037;
 2. 北京邮电大学计算机学院, 北京100876
Author(s):
LI Hai-feng1 DU Jun-ping2
1. School of Computer Science, Beijing Business and Technology University, Beij ing 100037, China;
2. School of Computer and Technology, Beijing University of Posts and Teleco mmunications, Beijing 100876,China
关键词:
图像分类颜色特征Boosting算法
Keywords:
image classification color features boosting algorithm
分类号:
TP391
文献标志码:
A
摘要:
研究了基于颜色的图像特征对于图像分类结果的影响.给出了采用基于颜色位置分布特征进行分类的方法,并与基于RGB直方图特征和基于HSV直方图特征的方法进行了比较.分别采用随机森林、Boosting算法和MLP神经网络3种分类方法进行图像分类,建立了自然图像分类系统.基于实验结果比较了随机森林、Boosting算法和MLP神经网络3种分类方法的优缺点,发现Boosting算法表现最好,更加适合于图像分类.
Abstract:
This paper studies the effects of an image’s color features on image classification. We developed a new classification method based on positional distribution of colors and compare it with other methods based on RGB and HSV histograms. The random forest, the Boosting algorithm, and the MLP neural network were applied respectively to classify images and a natural image classification system built up. The advantages and disadvantages of these three classification algorithms are discussed according to experimental results, showing that the boosting algorithm gives the best performance and is more suitable to image classification. 

参考文献/References:

[1]章毓晋.图像分割[M]. 北京:科学出版社, 2001.
 [2]贾富仓,李 华. 基于随机森林的多谱磁共振图像分割[J]. 计算机工程, 2005 ,31(10):159161.
 JIA Fucang,LI Hua. Multispectral magnetic resonance Image segmentation using r andom forests[J]. Computer Engineering,2005,31(10):159161.
[3]吕 坤,高 珊.一种基于改进的BP神经网络算法的布匹瑕疵分类器[J].微电子学与计算机,2006,23(3):8890.
 LU Kun,GAO Shan. A fabric flaws classifier based on improved BP neural network algorithm[J]. Microelectronics & Computer, 2006,23(3):8890.
[4]BREIMAN L. Random forests[J]. Machine Learning, 2001,45(1):532.
[5]SCHAPIRE R E. The strength of weak learnability[J]. Machine Learnin g,1990, 5(2): 197227.
[6]SCHAPIRE R E. A brief introduction to boosting[C]// Proceedings of the Si xteenth International Joint Conference on Artificial Intelligence. Stockho lm, 1999:14011406.
[7]FABRIZIO S, ALESSAMDRO S, NICOLA V.An improved boosting algorithm and its ap plication[C]// Proceedings of the 2000ACM CIKM International Conference on I nformation and Knowledge Management.Mclean,VA,USA,2000:7885.
[8]HAN Jiawei, KAMBER M. Data mining: concepts and techniques [M] . 北京:机械工业出版社, 2001.
[9]杨再华,李玉和,李庆祥.基于边缘特征提取的图像清晰度评价函数[J]. 计算机工程与应用, 2005 (10) : 3536.
 YANG Zaihua,LI Yuhe,LI Qingxiang. Image definition criterion based on edge grad ient feature[J]. Computer Engineering and Applications, 2005 (10) : 3536. 
[10]MANJUNATH B S, OHM J R, VASUDENVAN V V, et al. Color and text ure descriptors[J].IEEE Trans on CSVT, 2001,11(6): 703715.

相似文献/References:

[1]李海峰,杜军平.颜色特征的图像分类技术研究[J].智能系统学报,2008,3(02):65.[doi:CNKI:SUN:ZNXT.0.2008-02-017]
[2]姚伏天,钱沄涛.高斯过程及其在高光谱图像分类中的应用[J].智能系统学报,2011,6(05):396.
 YAO Futian,QIAN Yuntao.Gaussian process and its applications in hyperspectral image classification[J].CAAI Transactions on Intelligent Systems,2011,6(02):396.
[3]尤雅萍,成运,苏松志,等.基于谱域-空域结合特征和图割原理的高光谱图像分类[J].智能系统学报,2015,10(02):201.[doi:10.3969/j.issn.1673-4785.201410040]
 YOU Yaping,CHENG Yun,SU Songzhi,et al.Hyperspectral image classification based on spectral-spatial combination features and graph cut[J].CAAI Transactions on Intelligent Systems,2015,10(02):201.[doi:10.3969/j.issn.1673-4785.201410040]
[4]周治平,李文慧.颜色和纹理特征的运动目标检测[J].智能系统学报,2015,10(5):729.[doi:10.11992/tis.201408034]
 ZHOU Zhiping,LI Wenhui.Detection for moving targets based on color and texture features[J].CAAI Transactions on Intelligent Systems,2015,10(02):729.[doi:10.11992/tis.201408034]
[5]赵骞,李敏,赵晓杰,等.基于感受野学习的特征词袋模型简化算法[J].智能系统学报,2016,11(5):663.[doi:10.11992/tis.201601001]
 ZHAO Qian,LI Min,ZHAO Xiaojie,et al.Learning receptive fields for compact bag-of-feature model[J].CAAI Transactions on Intelligent Systems,2016,11(02):663.[doi:10.11992/tis.201601001]
[6]费宇杰,吴小俊.一种局部聚合描述符和组显著编码相结合的编码方法[J].智能系统学报,2017,12(02):172.[doi:10.11992/tis.201602010]
 FEI Yujie,WU Xiaojun.A new feature coding algorithm based on the combination of group salient coding and VLAD[J].CAAI Transactions on Intelligent Systems,2017,12(02):172.[doi:10.11992/tis.201602010]
[7]杨梦铎,栾咏红,刘文军,等.基于自编码器的特征迁移算法[J].智能系统学报,2017,12(06):894.[doi:10.11992/tis.201706037]
 YANG Mengduo,LUAN Yonghong,LIU Wenjun,et al.Feature transfer algorithm based on an auto-encoder[J].CAAI Transactions on Intelligent Systems,2017,12(02):894.[doi:10.11992/tis.201706037]
[8]马忠丽,刘权勇,武凌羽,等.一种基于联合表示的图像分类方法[J].智能系统学报,2018,13(02):220.[doi:10.11992/tis.201611036]
 MA Zhongli,LIU Quanyong,WU Lingyu,et al.Syncretic representation method for image classification[J].CAAI Transactions on Intelligent Systems,2018,13(02):220.[doi:10.11992/tis.201611036]

备注/Memo

备注/Memo:
收稿日期:2007-08-07.
基金项目:
国家自然科学基金资助项目(60773112);
北京市自然科学基金资助项目(4082021).
作者简介:
李海峰,男,1980年生,硕士研究生,主要研究方向为模式识别、智能信息系统等.
杜军平,女,1963年生,教授,博士生导师,中国人工智能学会常务副秘书长,中国自动化学会智能自动化专业委员会副秘书长,中国旅游信息标准技术委员会主任委员,主要研究方向为数据挖掘、Agent理论与技术、智能信息处理、旅游智能信息系统等.近年来完成科研项目20余项,发表学术论文90余篇,出版著作3部.
通讯作者:杜军平.E-mail:junpingd@bupt.edu.cn.
更新日期/Last Update: 2009-05-11