[1]周治平,李文慧.颜色和纹理特征的运动目标检测[J].智能系统学报编辑部,2015,10(5):729-735.[doi:10.11992/tis.201408034]
 ZHOU Zhiping,LI Wenhui.Detection for moving targets based on color and texture features[J].CAAI Transactions on Intelligent Systems,2015,10(5):729-735.[doi:10.11992/tis.201408034]
点击复制

颜色和纹理特征的运动目标检测(/HTML)
分享到:

《智能系统学报》编辑部[ISSN:1673-4785/CN:23-1538/TP]

卷:
第10卷
期数:
2015年5期
页码:
729-735
栏目:
学术论文—智能系统
出版日期:
2015-10-25

文章信息/Info

Title:
Detection for moving targets based on color and texture features
作者:
周治平 李文慧
江南大学 物联网工程学院, 江苏 无锡 214122
Author(s):
ZHOU Zhiping LI Wenhui
School of Internet of Things, Jiangnan University, Wuxi 214122, China
关键词:
运动目标检测颜色特征纹理特征阴影检测模型更新
Keywords:
moving target detectioncolor featuretexture featureshadow detectionmodel update
分类号:
TP751
DOI:
10.11992/tis.201408034
文献标志码:
A
摘要:
针对复杂场景中运动目标检测这一难题,提出利用RGB颜色特征和尺度不变局部三元模式的运动目标检测算法。利用时域中值法得到估算背景图像并快速初始化背景模型。通过颜色特征、纹理特征相似性度量,融合得出背景概率网络,通过侧抑制滤波提高对比度分类出前景与背景像素,前景像素进一步进行阴影检测,将阴影点归为背景点,但不用于模型更新。将算法与GMM、SC-SOBS、SUBSENS算法在变化检测数据库中进行对比验证。实验表明,新算法在满足实时性的基础上,对动态背景,阴影和相机抖动等有一定的鲁棒性。
Abstract:
An algorithm utilizing RGB color features and scale invariant local ternary patterns is presented for sol-ving the difficulty of detecting moving targets in complex scenes. The time-domain median method was adopted to estimate background image and initialize background model quickly. By fusing similarity measures of color and tex-ture features, a background probability network was obtained. The application of lateral inhibition filtering improved the contrast, the foreground and background pixels were classified, and shadow detection worked for the foreground pixels. The shadow pixels were classified as background pixels but not used for the model update. The performance of the proposed algorithm was compared with the other three algorithms in the change detection database. The proposed method can accurately handle scenes containing moving backgrounds, shadows, and camera jitter, with ac-ceptable real-time performance.

参考文献/References:

[1] WREN C R, AZARBAYEJANI A, DARRELL T, et al. Pfinder:real-time tracking of the human body[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7):780-785.
[2] ZIVKOVIC Z. Improved adaptive Gaussian mixture model for background subtraction[C]//Proceedings of the 17th International Conference on Pattern Recognition. Cambridge,UK, 2004:28-31.
[3] HERAS EVANGELIO R H, PATZOLD M, KELLER I, et al. Adaptively splitted GMM with feedback improvement for the task of background subtraction[J]. IEEE Transactions on Information Forensics and Security, 2014, 9(5):863-874.
[4] LI Xingliang, WU Yubao. Image objects detection algorithm based on improved Gaussian mixture model[J]. Journal of Multimedia, 2014, 9(1):152-158.
[5] HAN B, DAVIS L S. Density-based multifeature background subtraction with support vector machine[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(5):1017-1023.
[6] WANG Hanzi, SUTER D. Background subtraction based on a robust consensus method[C]//18th International Conference on Pattern Recognition. Hong Kong, China, 2006:223-226.
[7] MADDALENA L, PETROSINO A. A self-organizing approach to background subtraction for visual surveillance applications[J]. IEEE Transactions on Image Processing, 2008, 17(7):1168-1177.
[8] MADDALENA L, PETROSINO A. The SOBS algorithm:what are the limits?[C]//2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Providence, 2012:21-26.
[9] BARNICH O, VAN DROOGENBROECk M. ViBe:A universal background subtraction algorithm for video sequences[J]. IEEE Transactions on Image Processing, 2011, 20(6):1709-1724.
[10] HOFMANN M, TIEFENBACHER P, RIGOLL G. Background segmentation with feedback:The pixel-based adaptive segmenter[C]//2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Providence, USA, 2012:38-43.
[11] BILODEAU G A, JODOIN J P, SAUNIER N. Change detection in feature space using local binary similarity patterns[C]//2013 International Conference on Computer and Robot Vision. Providence, America, 2013:106-112.
[12] LIAO Shengcai, ZHAO Guoying, KELLOKUMPU V, et al. Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes[C]//2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, 2010:1301-1306.
[13] ST-CHARLES P L, BILODEAU G A, BERGEVIN R. Flexible background subtraction with self-balanced local sensitivity[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA, 2014:414-419.
[14] JODOIN P M, MIGNOTTE M, KONRAD J. Statistical background subtraction using spatial cues[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2007, 17(12):1758-1763.
[15] OJALA T, PIETIKÄINEN M, MÄENPÄÄ T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7):971-987.
[16] JI Zhangjian, WANG Weiqiang. Detect foreground objects via adaptive fusing model in a hybrid feature space[J]. Pattern Recognition, 2014, 47(9):2952-2961.
[17] DUAN Haibin, DENG Yimin, WANG Xiaohua, et al. Small and dim target detection via lateral inhibition filtering and artificial bee colony based selective visual attention[J]. PLoS One, 2013, 8(8):e72035.
[18] CUCCHIARA R, GRANA C, PICCARDI M, et al. Detecting moving objects, ghosts, and shadows in video streams[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(10):1337-1342.

相似文献/References:

[1]李海峰,杜军平.颜色特征的图像分类技术研究[J].智能系统学报编辑部,2008,3(02):155.
 LI Hai-feng,DU Jun-ping.Image classification technology based on color features[J].CAAI Transactions on Intelligent Systems,2008,3(5):155.
[2]付昆,田金文,马懿超.多特征融合的异视角目标关联算法[J].智能系统学报编辑部,2020,15(5):847.[doi:10.11992/tis.202006037]
 FU Kun,TIAN Jinwen,MA Yichao.Target association from different perspectives based on multi-feature fusion[J].CAAI Transactions on Intelligent Systems,2020,15(5):847.[doi:10.11992/tis.202006037]
[3]谢家阳,王行健,史治国,等.动态云台摄像机无人机检测与跟踪算法[J].智能系统学报编辑部,2021,16(5):858.[doi:10.11992/tis.202103032]
 XIE Jiayang,WANG Xingjian,SHI Zhiguo,et al.Drone detection and tracking in dynamic pan-tilt-zoom cameras[J].CAAI Transactions on Intelligent Systems,2021,16(5):858.[doi:10.11992/tis.202103032]

备注/Memo

备注/Memo:
收稿日期:2014-08-27;改回日期:。
作者简介:周治平,男,1962年生,教授,博士,主要研究方向为检测技术与自动化装置。主持和参与国家及省部级科研项目7项,获省部级科技进步奖3项,发表学术论文70余篇;李文慧,女,1990年生,硕士,主要研究方向为视频与图像信号处理。
通讯作者:李文慧.E-mail:liwenhui645@163.com.
更新日期/Last Update: 2015-11-16