[1]顾大强,郑文钢.多移动机器人协同搬运技术综述[J].智能系统学报,2019,14(01):20-27.[doi:10.11992/tis.201801038]
 GU Daqiang,ZHENG Wengang.Technologies for cooperative transportation by multiple mobile robots[J].CAAI Transactions on Intelligent Systems,2019,14(01):20-27.[doi:10.11992/tis.201801038]
点击复制

多移动机器人协同搬运技术综述(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第14卷
期数:
2019年01期
页码:
20-27
栏目:
出版日期:
2019-01-05

文章信息/Info

Title:
Technologies for cooperative transportation by multiple mobile robots
作者:
顾大强 郑文钢
浙江大学 机械工程学院, 浙江 杭州 310027
Author(s):
GU Daqiang ZHENG Wengang
School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
关键词:
多智能体系统机器人搬运群体智能非线性控制系统协同通信运动规划导航技术避障技术
Keywords:
multi-agent systemsrobotics transportationswarm intelligencenonlinear control systemscooperative communicationmotion planningnavigationcollision avoidance technology
分类号:
TP242.6
DOI:
10.11992/tis.201801038
摘要:
多移动机器人协同搬运系统是多移动机器人系统的典型应用,在一些特殊场合中具有较强的应用潜力。对此,本文综述了多移动机器人协同搬运的相关技术,总结了国内外的发展状况。针对不同的搬运对象,分析比较了抓取、推拉、锁定3种搬运方案,重点分析了不同搬运方案下的多移动机器人协同搬运策略算法原理以及各自的优缺点;概述了多移动机器人搬运系统中涉及的周边技术,主要包括多移动机器人任务分配、环境感知定位、轨迹规划3个方面;最后对多移动机器人协同搬运技术的研究方向进行了展望。
Abstract:
Cooperative transportation by multiple mobile robots is a typical application of the multi-robot system, and has strong application potential, especially in specific circumstances. In this review, we summarize the range of cooperative transportation technologies and discuss related research progress in China and abroad. With respect to different transportation objectives, we compare three handling schemes, including grab, push, and closure. We then analyze the algorithm principles and respective advantages and disadvantages of each scheme. We introduce the peripheral technologies used in multi-robot transportation systems, including task allocation, environmental perception and location, and motion planning by multiple mobile robots. Finally, we present an overview of the development trend in cooperative transportation technology.

参考文献/References:

[1] ARAI T, PAGELLO E, PARKER L E. Guest editorial advances in multirobot systems[J]. IEEE transactions on robotics and automation, 2002, 18(5):655-661.
[2] PARKER L E, TANG Fang. Building multirobot coalitions through automated task solution synthesis[J]. Proceedings of the IEEE, 2006, 94(7):1289-1305.
[3] SCHWARTZ J T, SHARIR M. On the "piano movers’" problem I. The case of a two-dimensional rigid polygonal body moving amidst polygonal barriers[J]. Communications on pure and applied mathematics, 1983, 36(3):345-398.
[4] MATARIC M J, NILSSON M, SIMSARIN K T. Cooperative multi-robot box-pushing[C]//Proceedings of 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots. Pittsburgh, PA, USA, 1995:556-561.
[5] MOON S, KWAK D, KIM H J. Cooperative control of differential wheeled mobile robots for box pushing problem[C]//Proceedings of the 201212th International Conference on Control, Automation and Systems. Jeju Island, South Korea, 2012:140-144.
[6] PARRA-GONZÁLEZ E F, RAMÍREZ-TORRES G, TOSCANO-PULIDO G. Motion planning for cooperative multi-robot box-pushing problem[C]//Proceedings of the 11th Ibero-American Conference on Artificial Intelligence. Lisbon, Portugal, 2008:382-391.
[7] PARRA-GONZÁLEZ E F, RAMÍREZ-TORRES J G. Grasp quality for the object transportation by communities of mobile robots[C]//Proceedings of the 20129th International Conference on Electrical Engineering, Computing Science and Automatic Control. Mexico, Mexico, 2012:1-6.
[8] KOVAC K, ZIVKOVIC I, BASIC B D. Simulation of multi-robot reinforcement learning for box-pushing problem[C]//Proceedings of the 12th IEEE Mediterranean Electrotechnical Conference. Dubrovnik, Croatia, 2004:603-606.
[9] WANG Ying, DE SILVA C W. Multi-robot box-pushing:single-agent Q-learning vs. team Q-learning[C]//Proceedings of 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China, 2006:3694-3699.
[10] LIU Zhaojia, GUETA L B, OTA J. A strategy for fast grasping of unknown objects using partial shape information from range sensors[J]. Advanced robotics, 2013, 27(8):581-595.
[11] ALKILABI M H M, NARAYAN A, TUCI E. Cooperative object transport with a swarm of e-puck robots:robustness and scalability of evolved collective strategies[J]. Swarm intelligence, 2017, 11(3/4):185-209.
[12] 秦颖, 李涛, 张智勇, 等. 一种面向工程应用的多移动搬运机器人系统结构[J]. 中南大学学报(自然科学版), 2013, 44(S2):21-27 QIN Ying, LI Tao, ZHANG Zhiyong, et al. A mobile transfer multi-robots system structure oriente to engineering application[J]. Journal of central south university (science and technology), 2013, 44(S2):21-27
[13] YAMASHITA A, ARAI T, OTA J, et al. Motion planning of multiple mobile robots for Cooperative manipulation and transportation[J]. IEEE transactions on robotics and automation, 2003, 19(2):223-237.
[14] YAMASHITA A, FUKUCHI M, OTA J, et al. Motion planning for cooperative transportation of a large object by multiple mobile robots in a 3D environment[C]//Proceedings of 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings. San Francisco, CA, USA, 2000:3144-3151.
[15] RIMON E, BLAKE A. Caging 2D bodies by 1-parameter two-fingered gripping systems[C]//Proceedings of 1996 IEEE International Conference on Robotics and Automation. Minneapolis, MN, USA, 1996:1458-1464.
[16] RIMON E, BURDICK J W. Mobility of bodies in contact. I. A 2nd-order mobility index for multiple-finger grasps[J]. IEEE transactions on robotics and automation, 1998, 14(5):696-708.
[17] OTA J. Multi-agent robot systems as distributed autonomous systems[J]. Advanced engineering informatics, 2006, 20(1):59-70.
[18] CHEN Jianing, GAUCI M, GROß R. A strategy for transporting tall objects with a swarm of miniature mobile robots[C]//Proceedings of 2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany, 2013:863-869.
[19] RUBENSTEIN M, CABRERA A, WERFEL J, et al. Collective transport of complex objects by simple robots:theory and experiments[C]//Proceedings of 2013 International Conference on Autonomous Agents and Multi-Agent Systems. St. Paul, MN, USA, 2013:47-54.
[20] CHEN Jianing, GAUCI M, LI Wei, et al. Occlusion-based cooperative transport with a swarm of miniature mobile robots[J]. IEEE transactions on robotics, 2015, 31(2):307-321.
[21] FUJⅡ N, INOUE R, OTA J. Multiple robot rearrangement problem using an extended project-scheduling problem solver[C]//Proceedings of 2008 IEEE International Conference on Robotics and Biomimetics. Bangkok, Thailand, 2009:2007-2012.
[22] FUJⅡ N, OTA J. Territorial and effective task decomposition for rearrangement planning of multiple objects by multiple mobile robots[J]. Advanced robotics, 2011, 25(1/2):47-74.
[23] RUIZ D, BACCA B, CAICEDO E. Control strategy based on swarms algorithms to cooperative payload transport using a non-holonomic mobile robots group[J]. IEEE Latin America transactions, 2016, 14(2):445-456.
[24] DAS P, RIBAS-XIRGO L. A study of time-varying cost parameter estimation methods in automated transportation systems based on mobile robots[C]//Proceedings of the 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation. Berlin, Germany, 2016:1-4.
[25] DORIGO M, GAMBARDELLA L M. Ant colony system:a cooperative learning approach to the traveling salesman problem[J]. IEEE transactions on evolutionary computation, 1997, 1(1):53-66.
[26] 张成, 凌有铸, 陈孟元. 改进蚁群算法求解移动机器人路径规划[J]. 电子测量与仪器学报, 2016, 30(11):1758-1764 ZHANG Cheng, LING Youzhu, CHEN Mengyuan. Path planning of mobile robot based on an improved ant colony algorithm[J]. Journal of electronic measurement and instrumentation, 2016, 30(11):1758-1764
[27] LIU Jianhua, YANG Jianguo, LIU Huaping, et al. An improved ant colony algorithm for robot path planning[J]. Soft computing, 2017, 21(19):5829-5839.
[28] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of 1995 IEEE International Conference on Neural Networks. Perth, WA, Australia, 1995:1942-1948.
[29] 黄太安, 生佳根, 徐红洋, 等. 一种改进的简化粒子群算法[J]. 计算机仿真, 2013, 30(2):327-330, 335 HUANG Taian, SHENG Jiagen, XU Hongyang, et al. Improved simplified particle swarm optimization[J]. Computer simulation, 2013, 30(2):327-330, 335
[30] NAKANO T, OKAIE Y, KOBAYASHI S, et al. Performance evaluation of leader-follower-based mobile molecular communication networks for target detection applications[J]. IEEE transactions on communications, 2017, 65(2):663-676.
[31] LIN Fu. Performance of leader-follower multi-agent systems in directed networks[J]. Systems and control letters, 2018, 113:52-58.
[32] GERKEY B P, MATARIC M J. Pusher-watcher:an approach to fault-tolerant tightly-coupled robot coordination[C]//Proceedings of 2002 IEEE International Conference on Robotics and Automation. Washington, DC, USA, 2002:464-469.
[33] INOUE Y, TOHGE T, IBA H. Cooperative transportation system for humanoid robots using simulation-based learning[J]. Applied soft computing, 2007, 7(1):115-125.
[34] MIYATA N, OTA J, ARAI T, et al. Cooperative transport by multiple mobile robots in unknown static environments associated with real-time task assignment[J]. IEEE transactions on robotics and automation, 2002, 18(5):769-780.
[35] LIU Zhaojia, KAMOGAWA H, OTA J. Motion planning for two robots of an object handling system considering fast transition between stable states[J]. Advanced robotics, 2012, 26(11/12):1291-1316.
[36] SAKUYAMA T, FIGUEROA J, MIYAZAKI Y, et al. Transportation of a large object by small mobile robots using hand carts[C]//Proceedings of 2012 IEEE International Conference on Robotics and Biomimetics. Guangzhou, China, 2012:2108-2113.
[37] OHASHI F, KAMINISHI K, HEREDIA J D F, et al. Realization of heavy object transportation by mobile robots using handcarts and outrigger[J]. Robomech journal, 2016, 3:27.
[38] SUDSANG A, PONCE J. On grasping and manipulating polygonal objects with disc-shaped robots in the plane[C]//Proceedings of 1998 IEEE International Conference on Robotics and Automation. Leuven, Belgium, 1998:2740-2746.
[39] SUDSANG A, PONCE J. A new approach to motion planning for disc-shaped robots manipulating a polygonal object in the plane[C]//Proceedings of 2001 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings. San Francisco, CA, USA, 2000:1068-1075.
[40] WANG Zhidong, KUMAR V. Object closure and manipulation by multiple cooperating mobile robots[C]//Proceedings of 2002 IEEE International Conference on Robotics and Automation. Washington, DC, USA, 2002:394-399.
[41] 黎萍, 杨宜民. 多机器人系统任务分配的研究进展[J]. 计算机工程与应用, 2008, 44(17):201-205, 227 LI Ping, YANG Yimin. Progress of task allocation in multi-robot systems[J]. Computer engineering and applications, 2008, 44(17):201-205, 227
[42] 李冯敬, 姚佩阳, 张杰勇, 等. 基于多Agent的分布式通信对抗目标分配系统[J]. 计算机工程, 2012, 38(12):283-286, 290 LI Fengjing, YAO Peiyang, ZHANG Jieyong, et al. Distributed communication countermeasures target assignment system based on multi-agent[J]. Computer engineering, 2012, 38(12):283-286, 290
[43] PARKER L E. ALLIANCE:an architecture for fault tolerant multirobot cooperation[J]. IEEE transactions on robotics and automation, 1998, 14(2):220-240.
[44] KLAVINS E, KODITSCHEK D E. A formalism for the composition of concurrent robot behaviors[C]//Proceedings of 2000 IEEE International Conference on Robotics and Automation. San Francisco, CA, USA, 2000:3395-3402.
[45] SCHRECKENGHOST D, BONASSO P, KORTENKAMP D, et al. Three tier architecture for controlling space life support systems[C]//Proceedings of 1998 IEEE International Joint Symposia on Intelligence and Systems. Rockville, MD, USA, 1998:195-201.
[46] VOLPE R, NESNAS I, ESTLIN T, et al. The CLARAty architecture for robotic autonomy[C]//Proceedings of 2001 IEEE Aerospace Conference Proceedings. Big Sky, MT, USA, 2001:121-132.
[47] 王东署, 王佳. 未知环境中移动机器人环境感知技术研究综述[J]. 机床与液压, 2013, 41(15):187-191 WANG Dongshu, WANG Jia. Research review of environmental cognition techniques of mobile robots in unknown environment[J]. Machine tool and hydraulics, 2013, 41(15):187-191
[48] ABID A, KHAN M T. Multi-sensor, multi-level data fusion and behavioral analysis based fault detection and isolation in mobile robots[C]//Proceedings of the 20178th IEEE Annual Information Technology, Electronics and Mobile Communication Conference. Vancouver, BC, Canada, 2017:40-45.
[49] 杨帆. 多移动机器人编队控制与协作运输研究[D]. 上海:华东理工大学, 2011:39-45. YANG Fan. Research on multiple mobile robot formation control and cooperative transport[D]. Shanghai:East China University of Science and Technology, 2011:39-45.
[50] KITO T, OTA J, KATSUKI R, et al. Smooth path planning by using visibility graph-like method[C]//Proceedings of 2003 IEEE International Conference on Robotics and Automation. Taipei, Taiwan, China, 2003:3770-3775.
[51] TREVAI C, OTA J, ARAI T. Multiple mobile robot surveillance in unknown environments[J]. Advanced robotics, 2007, 21(7):729-749.
[52] QAYUM M A, NAHAR N, SIDDIQUE N A, et al. Interactive intelligent agents with creative minds:Experiments with mobile robots in cooperating tasks by using machine learning[C]//Proceedings of 2017 IEEE International Conference on Imaging, Vision and Pattern Recognition. Dhaka, Bangladesh, 2017:1-6.
[53] 杨甜甜, 苏治宝, 刘进, 等. 多移动机器人避障编队控制[J]. 计算机仿真, 2011, 28(9):215-218 YANG Tiantian, SU Zhibao, LIU Jin, et al. Formation control and obstacle avoidance for multiple mobile robots[J]. Computer simulation, 2011, 28(9):215-218

相似文献/References:

[1]沈 晶,顾国昌,刘海波.基于多智能体的Option自动生成算法[J].智能系统学报,2006,1(01):84.
 SHEN Jing,GU Guo-chang,LIU Hai-bo.Algorithm for automatic constructing Option based on multi-agent[J].CAAI Transactions on Intelligent Systems,2006,1(01):84.
[2]李宗刚,贾英民.一类具有群体LEADER的多智能体系统的聚集行为[J].智能系统学报,2006,1(02):26.
 LI Zong-gang,JIA Ying-min.Aggregation of MultiAgent systems with group leaders[J].CAAI Transactions on Intelligent Systems,2006,1(01):26.
[3]王建春,谢广明.含有障碍物环境下多智能体系统的聚集行为[J].智能系统学报,2007,2(05):78.
 WANG Jian-chun,XIE Guang-ming.Aggregation behaviors of multiAgent systems in an environment with obstacles[J].CAAI Transactions on Intelligent Systems,2007,2(01):78.
[4]王 龙,伏 锋,陈小杰,等.复杂网络上的群体决策[J].智能系统学报,2008,3(02):95.
 WANG Long,FU Feng,CHEN Xiao-jie,et al.Collective decision-making over complex networks[J].CAAI Transactions on Intelligent Systems,2008,3(01):95.
[5]连传强,徐昕,吴军,等.面向资源分配问题的Q-CF多智能体强化学习[J].智能系统学报,2011,6(02):95.
 LIAN Chuanqiang,XU Xin,WU Jun,et al.Q-CF multiAgent reinforcement learningfor resource allocation problems[J].CAAI Transactions on Intelligent Systems,2011,6(01):95.
[6]王冬梅,方华京.反馈控制策略的自适应群集运动[J].智能系统学报,2011,6(02):141.
 WANG Dongmei,FANG Huajing.An adaptive flocking motion with a leader based on a feedback control scheme[J].CAAI Transactions on Intelligent Systems,2011,6(01):141.
[7]董洁,纪志坚,王晓晓.多智能体网络系统的能控性代数条件[J].智能系统学报,2015,10(5):747.[doi:10.11992/tis.201411030]
 DONG Jie,JI Zhijian,WANG Xiaoxiao.Algebraic conditions for the controllability of multi-agent systems[J].CAAI Transactions on Intelligent Systems,2015,10(01):747.[doi:10.11992/tis.201411030]
[8]王中林,刘忠信,陈增强,等.一种多智能体领航跟随编队新型控制器的设计[J].智能系统学报,2014,9(03):298.[doi:10.3969/j.issn.1673-4785.]
 WANG Zhonglin,LIU Zhongxin,CHEN Zengqiang,et al.A kind of new type controller for multi-agent leader-follower formation[J].CAAI Transactions on Intelligent Systems,2014,9(01):298.[doi:10.3969/j.issn.1673-4785.]
[9]王晓晓,纪志坚.广播信号下非一致多智能体系统的能控性[J].智能系统学报,2014,9(04):401.[doi:10.3969/j.issn.1673-4785.201401011]
 WANG Xiaoxiao,JI Zhijian.Controllability of non-identical multi-agent systems under a broadcasting control signal[J].CAAI Transactions on Intelligent Systems,2014,9(01):401.[doi:10.3969/j.issn.1673-4785.201401011]
[10]马晨,陈雪波.基于包含原理的多智能体一致性协调控制[J].智能系统学报,2014,9(04):468.[doi:10.3969/j.issn.1673-4785.201306024]
 MA Chen,CHEN Xuebo.Coordinated control of the consensus of a multi-agent system based on the inclusion principle[J].CAAI Transactions on Intelligent Systems,2014,9(01):468.[doi:10.3969/j.issn.1673-4785.201306024]

备注/Memo

备注/Memo:
收稿日期:2018-01-21。
作者简介:顾大强,男,1963年生,副教授,主要研究方向为机器人技术、产品创新设计方法、机械设计。主持完成国家自然科学基金项目2项,获得发明专利20余项。发表学术论文40余篇;郑文钢,男,1994年生,硕士研究生,主要研究方向为多移动机器人协同控制技术、机器视觉。
通讯作者:顾大强.E-mail:gudq@zju.edu.cn
更新日期/Last Update: 1900-01-01