[1]董洁,纪志坚,王晓晓.多智能体网络系统的能控性代数条件[J].智能系统学报编辑部,2015,10(5):747-754.[doi:10.11992/tis.201411030]
 DONG Jie,JI Zhijian,WANG Xiaoxiao.Algebraic conditions for the controllability of multi-agent systems[J].CAAI Transactions on Intelligent Systems,2015,10(5):747-754.[doi:10.11992/tis.201411030]
点击复制

多智能体网络系统的能控性代数条件(/HTML)
分享到:

《智能系统学报》编辑部[ISSN:1673-4785/CN:23-1538/TP]

卷:
第10卷
期数:
2015年5期
页码:
747-754
栏目:
出版日期:
2015-10-25

文章信息/Info

Title:
Algebraic conditions for the controllability of multi-agent systems
作者:
董洁 纪志坚 王晓晓
青岛大学 自动化工程学院, 山东 青岛 266071
Author(s):
DONG Jie JI Zhijian WANG Xiaoxiao
School of Automation Engineering, Qingdao University, Qingdao 266071, China
关键词:
多智能体系统结构可控性精准可控性相对协议绝对协议代数条件图论矩阵论
Keywords:
multi-agent systemstructure controllabilityexact controllabilityrelative protocolabsolute protocolalgebraic conditiongraph theorymatrix theory
分类号:
TP273
DOI:
10.11992/tis.201411030
文献标志码:
A
摘要:
能控性是多智能体系统研究的核心问题,主要包括结构可控性和精准可控性。对多智能体系统的模型和能控性代数条件进行了总结。在相对协议和绝对协议条件下,运用图论和矩阵论的知识系统分析了多智能体系统能控性的代数条件。按照同质多智能体到异质多智能体的顺序,对现有的多智能体系统模型和代数条件进行了梳理,并在已有结论的基础上对多智能体系统能控性的代数条件进行了改善,进一步提出了新的代数条件。多智能体能控性代数条件的改进大大简化了能控性的计算量。
Abstract:
Controllability is a key issue in the study of multi-agent systems, especially structural controllability and exact controllability. This paper summarizes the system model and the algebraic conditions for controllability of multi-agent systems. Based on relative and absolute protocols, the algebraic conditions are analyzed systematically for multi-agent system controllability, using graph theory and matrix theory. Going from homogeneous dynamical multi-agent systems to heterogeneous dynamical multi-agent systems, the existing models and algebraic conditions for multi-agent systems are sorted out. The algebraic conditions for controllability of multi-agent systems are improved, and some new algebraic conditions are proposed. The improvement of algebraic controllability conditions for multi-agent system simplifies the calculation greatly.

参考文献/References:

[1] LIM H, KANG Y, KIM J, et al. Formation control of leader following unmanned ground vehicles using nonlinear model predictive control[C]//IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Singapore, 2009:945-950.
[2] JADBABAIE A, LIN J, MORSE A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules[J]. IEEE Transactions on Automatic Control, 2003, 48(6):988-1001.
[3] FAX J A. Optimal and cooperative control of vehicle formations[M]. Pasadena:California Institute Technology, 2001:1-11.
[4] OLFATI-SABER R, MURRAY R M. Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE Transactions on Automatic Control, 2004, 49(9):1520-1533.
[5] 刘金琨, 尔联洁. 多智能体技术应用综述[J]. 控制与决策, 2001, 16(2):133-140, 180. LIU Jinkun, ER Lianjie. Overview of application of multiagent technology[J]. Control and Decision, 2001, 16(2):133-140, 180.
[6] FAX J A, MURRAY R M. Information flow and cooperative control of vehicle formations[J]. IEEE Transactions on Automatic Control, 2004, 49(9):1465-1476.
[7] OGREN P, FIORELLI E, LEONARD N E. Cooperative control of mobile sensor networks:adaptive gradient climbing in a distributed environment[J]. IEEE Transactions on Automatic Control, 2004, 49(8):1292-1302.
[8] MU S M, CHU T G, WANG L. Coordinated collective motion in a motile particle group with a leader[J]. Physica A:Statistical Mechanics and its Applications, 2005, 351(2-4):211-226.
[9] HONG Y G, HU J P, GAO L X. Tracking control for multi-agent consensus with an active leader and variable topology[J]. Automatica, 2006, 42(7):1177-1182.
[10] SHI H, WANG L, CHU T G. Virtual leader approach to coordinated control of multiple mobile agents with asymmetric interactions[J]. Physica D:Nonlinear Phenomena, 2006, 213(1):51-65.
[11] LANE D M, MCFADZEAN A G. Distributed problem solving and real-time mechanisms in robot architectures[J]. Engineering Applications of Artificial Intelligence, 1994, 7(2):105-117.
[12] KALMAN R E. Mathematical description of linear dynamical systems[J]. Journal of the Society for Industrial and Applied Mathematics Series A:Control, 1963, 1(2):152-192.
[13] TANNER H G. On the controllability of nearest neighbor interconnections[C]//Proceedings of the 43rd IEEE Conference on Decision and Control. Atlantis, Paradise Island, Bahamas, 2004:2467-2472.
[14] RAHMANI A, MESBAHI M. On the controlled agreement problem[C]//Proceedings of the 2006 American Control Conference. Minneapolis, USA, 2006:1376-1381.
[15] RAHMANI A, JI M, MESBAHI M, et al. Controllability of multi-agent systems from a graph-theoretic perspective[J]. SIAM Journal on Control and Optimization, 2009, 48(1):162-186.
[16] JI M, EGERSTEDT M. A graph-theoretic characterization of controllability for multi-agent systems[C]//Proceedings of the IEEE American Control Conference. New York, USA, 2007:4588-4593.
[17] JI Z J, WANG Z D, LIN H, et al. Interconnection topologies for multi-agent coordination under leader-follower framework[J]. Automatica, 2009, 45(12):2857-2863.
[18] DAVISON E J. Connectability and structural controllability of composite systems[J]. Automatica, 1977, 13(2):109-123.
[19] XIANG L Y, ZHU J J H, CHE F, et al. Controllability of weighted and directed networks with nonidentical node dynamics[OL/EB].[2014-01-20] . http://www.hindawi.com/journals/mpe/2013/405034.
[20] 王晓晓, 纪志坚. 广播信号下非一致多智能体系统的能控性[J]. 智能系统学报, 2014, 9(4):401-406. WANG Xiaoxiao, JI Zhijian. Controllability of non-identical multi-agent systems under a broadcasting control signal[J]. CAAI Transactions on Intelligent Systems, 2014, 9(4):401-406.
[21] CAI N, CAO J W, LIU M H, et al. On controllability problems of high-order dynamical multi-agent systems[J]. Arabian Journal for Science and Engineering, 2014, 39(5):4261-4267.
[22] LIU B, CHU T G, WANG L, et al. Controllability of a leader-follower dynamic network with switching topology[J]. IEEE Transactions on Automatic Control, 2008, 53(4):1009-1013.
[23] JI Z J, WANG Z D, LIN H, et al. Controllability of multi-agent systems with time-delay in state and switching topology[J]. International Journal of Control, 2010, 83(2):371-386.
[24] ZHANG S, CAO M, CAMLIBEL M K. Upper and lower bounds for controllable subspaces of networks of diffusively coupled agents[J]. IEEE Transactions on Automatic Control, 2014, 59(3):745-750.
[25] LIU B, SU H S, LI R, et al. Switching controllability of discrete-time multi-agent systems with multiple leaders and time-delays[J]. Applied Mathematics and Computation, 2014, 228:571-588.
[26] YOON M G, ROWLINSON P, CVETKOVI D, et al. Controllability of multi-agent dynamical systems with a broadcasting control signal[J]. Asian Journal of Control, 2014, 16(4):1066-1072.
[27] NI W, WANG X L, XIONG C. Consensus controllability, observability and robust design for leader-following linear multi-agent systems[J]. Automatica, 2013, 49(7):2199-2205.
[28] Yoon M G. Single agent control for cyclic consensus systems[J]. International Journal of Control, Automation and Systems, 2013, 11(2):243-249.
[29] GODSIL C, ROYLE G. Algebraic Graph Theory[M]. New York:Springer, 2001:163-171.
[30] CAI N, ZHONG Y S. Formation controllability of high-order linear time-invariant swarm systems[J]. IET Control Theory & Application, 2010, 4(4):646-654.
[31] CHEN C T. Linear system theory and design[M]. New York:Oxford University Press, 1999:6.
[32] CAI N, CAO J W, KHAN M J. A controllability synthesis problem for dynamic multi-agent systems with linear high-order protocol[J]. International Journal of Control, Automation and Systems, 2014, 12(6):1366-1371.
[33] HORN R A, Johnson C R. Matrix analysis[M]. Cambridge:Cambridge University Press, 1985:11-14.

相似文献/References:

[1]沈 晶,顾国昌,刘海波.基于多智能体的Option自动生成算法[J].智能系统学报编辑部,2006,1(01):84.
 SHEN Jing,GU Guo-chang,LIU Hai-bo.Algorithm for automatic constructing Option based on multi-agent[J].CAAI Transactions on Intelligent Systems,2006,1(5):84.
[2]李宗刚,贾英民.一类具有群体LEADER的多智能体系统的聚集行为[J].智能系统学报编辑部,2006,1(02):26.
 LI Zong-gang,JIA Ying-min.Aggregation of MultiAgent systems with group leaders[J].CAAI Transactions on Intelligent Systems,2006,1(5):26.
[3]王建春,谢广明.含有障碍物环境下多智能体系统的聚集行为[J].智能系统学报编辑部,2007,2(05):78.
 WANG Jian-chun,XIE Guang-ming.Aggregation behaviors of multiAgent systems in an environment with obstacles[J].CAAI Transactions on Intelligent Systems,2007,2(5):78.
[4]王 龙,伏 锋,陈小杰,等.复杂网络上的群体决策[J].智能系统学报编辑部,2008,3(02):95.
 WANG Long,FU Feng,CHEN Xiao-jie,et al.Collective decision-making over complex networks[J].CAAI Transactions on Intelligent Systems,2008,3(5):95.
[5]连传强,徐昕,吴军,等.面向资源分配问题的Q-CF多智能体强化学习[J].智能系统学报编辑部,2011,6(02):95.
 LIAN Chuanqiang,XU Xin,WU Jun,et al.Q-CF multiAgent reinforcement learningfor resource allocation problems[J].CAAI Transactions on Intelligent Systems,2011,6(5):95.
[6]王冬梅,方华京.反馈控制策略的自适应群集运动[J].智能系统学报编辑部,2011,6(02):141.
 WANG Dongmei,FANG Huajing.An adaptive flocking motion with a leader based on a feedback control scheme[J].CAAI Transactions on Intelligent Systems,2011,6(5):141.
[7]王中林,刘忠信,陈增强,等.一种多智能体领航跟随编队新型控制器的设计[J].智能系统学报编辑部,2014,9(03):298.[doi:10.3969/j.issn.1673-4785.]
 WANG Zhonglin,LIU Zhongxin,CHEN Zengqiang,et al.A kind of new type controller for multi-agent leader-follower formation[J].CAAI Transactions on Intelligent Systems,2014,9(5):298.[doi:10.3969/j.issn.1673-4785.]
[8]王晓晓,纪志坚.广播信号下非一致多智能体系统的能控性[J].智能系统学报编辑部,2014,9(04):401.[doi:10.3969/j.issn.1673-4785.201401011]
 WANG Xiaoxiao,JI Zhijian.Controllability of non-identical multi-agent systems under a broadcasting control signal[J].CAAI Transactions on Intelligent Systems,2014,9(5):401.[doi:10.3969/j.issn.1673-4785.201401011]
[9]马晨,陈雪波.基于包含原理的多智能体一致性协调控制[J].智能系统学报编辑部,2014,9(04):468.[doi:10.3969/j.issn.1673-4785.201306024]
 MA Chen,CHEN Xuebo.Coordinated control of the consensus of a multi-agent system based on the inclusion principle[J].CAAI Transactions on Intelligent Systems,2014,9(5):468.[doi:10.3969/j.issn.1673-4785.201306024]
[10]王康,纪志坚,晁永翠.二阶邻居协议下多智能体系统能控能观性保持[J].智能系统学报编辑部,2017,12(02):213.[doi:10.11992/tis.201601022]
 WANG Kang,JI Zhijian,CHAO Yongcui.A control strategy for maitaining controllability and observability of a multi-agent system with the second-order neighborhood protocol[J].CAAI Transactions on Intelligent Systems,2017,12(5):213.[doi:10.11992/tis.201601022]

备注/Memo

备注/Memo:
收稿日期:2014-11-25;改回日期:。
基金项目:国家自然科学基金资助项目(61374062);山东省杰出青年科学基金资助项目(JQ201419).
作者简介:董洁,女,1990年生,硕士研究生,主要研究方向为多智能体系统;纪志坚,男,1973年生,博士,教授,博士生导师,主要研究方向为群体系统动力学与协调控制、复杂网络、切换动力系统的分析与控制、系统生物以及基于网络的控制系统等。主持国家自然科学基金项目3项、山东省杰出青年科学基金项目1项。山东省杰出青年基金获得者,发表学术论文70余篇,其中被SCI检索23篇,EI检索50余篇;王晓晓,女,1989年生,硕士研究生,主要研究方向为多智能体系统。
通讯作者:纪志坚.E-mail:jizhijian@pku.org.cn.
更新日期/Last Update: 2015-11-16