[1]秦全德,李丽,程适,等.交互学习的粒子群优化算法[J].智能系统学报,2012,7(06):547-553.
 QIN Quande,LI Li,CHENG Shi,et al.Interactive learning particle swarm optimization algorithm[J].CAAI Transactions on Intelligent Systems,2012,7(06):547-553.
点击复制

交互学习的粒子群优化算法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第7卷
期数:
2012年06期
页码:
547-553
栏目:
出版日期:
2012-12-25

文章信息/Info

Title:
Interactive learning particle swarm optimization algorithm
文章编号:
1673-4785(2012)06-0547-07
作者:
秦全德1李丽1程适23李荣钧4
1. 深圳大学 管理学院,广东 深圳 518060;
2. 英利利物浦大学 电气电子工程系,英国 利物浦 L69 3GJ;
3. 西交利物浦大学 电气电子工程系,江苏 苏州 215123;
4. 华南理工大学 工商管理学院, 广东 广州 510640
Author(s):
QIN Quande1 LI Li1 CHENG Shi23 LI Rongjun4
1. College of Management, Shenzhen University, Shenzhen 518060, China;
2. Department of Electrical Engineering and Electronics, Liverpool University, Liverpool L69 3GJ, UK;
3. Department of Electrical and Electronics Engineering, Xi’an JiaotongLiverpool University, Suzhou 215123, China;
4. School of Business Administration, South China University of Technology, Guangzhou 510640, China
关键词:
粒子群优化算法交互学习学习策略学习行为群体多样性
Keywords:
particle swarm optimization algorithm interactive learning learning strategy learning behavior population diversity
分类号:
TP18
文献标志码:
A
摘要:
分析基本的粒子群优化学习机制的缺陷,启发于人类社会不同群体之间可以交互学习的特点,提出了一种改进粒子群优化算法——ILPSO.在ILPSO算法中,粒子由2个种群构成.当2个种群中最佳的全局最优位置在连续一定的迭代次数内没有改善时,执行交互学习策略.依据每个种群的全局最优位置的适应值,运用模拟退火的机制和轮盘赌的方法确定学习种群和被学习种群.提出了一个基于适应度排序的经验公式,计算学习种群中的每个粒子向被学习种群学习的概率.为了摆脱选择压力,采用了一种速度变异的方法.多个测试函数的数值实验结果表明,ILPSO具有较好的全局搜索能力,是一种求解复杂问题的有效方法.
Abstract:
Analyzing the drawbacks of learning mechanism in the basic particle swarm optimization (PSO), an interactive learning particle swarm optimization (ILPSO) is presented, which is inspired by the phenomenon in human society that individuals in different groups can learn each other. Particles are composed of two populations in ILPSO. When the best particle’s fitness value of two populations does not improve within a certain number of successive iterations, interactive learning strategies are implemented. According to the best particle′s fitness value of each population, a simulated annealing mechanism and roulette method are used to identify the learning population and the learned population. This paper proposes an empirical formula of sorting fitness value to calculate the probability of each particle in the learning population learning from the learned population. In order to escape selection pressure, a speed mutation method is used. The numerical experimental results of some benchmark functions show that ILPSO has good global search capability and is an effective method for solving complicated problems.

参考文献/References:

[1]EBERHART R C, KENNEDY J. Particle swarm optimization [C]//IEEE International Conference on Neural Networks. Perth, Australia, 1995: 19421948.
[2]KENNEDY J, EBERHART R C. Empirical study of particle swarm optimization[C]//Proc of Congress on Evolutionary Computation. Washington, DC, USA, 1999: 19451949.
[3]ANGELINE P J. Evolutionary optimization versus particle swarm optimization and philosophy and performance difference[C]//Proc of 7th Annual Conference on Evolutionary Programming. San Diego, USA, 1998: 601610.
[4]SHI Y, EBERHART R C. A modified particle swarm optimizer[C]//IEEE Congress on Evolutionary Computation Anchorage. AK, NJ, 1998: 6973.
[5]FAN S K S, LIANG Y C, ZAHARA E. Hybrid simplex search and particle swarm optimization for the global optimization of multimodal functions[J]. Engineering Optimization, 2004, 36: 401418.
[6]SUGANTHAN P N. Particle swarm optimizer with neighborhood operator[C]//Proc of the IEEE Congress of Evolutionary Computation. Washington DC, USA, 1999: 19581961.
[7]杨雪榕,梁加红,陈凌,等. 多邻域改进粒子群算法[J]. 系统工程与电子技术, 2010, 32(11): 24532458. 
YANG Xuerong, LIANG Jiahong, CHEN Ling,et al. Multineighbourhood improved particle swarm optimization algorithm[J]. Systems Engineering and Electronics, 2010, 32(11): 24532558. 
[8]杨帆,胡春平,颜学峰. 基于蚁群系统的参数自适应粒子群算法及其应用[J]. 控制理论与应用, 2010, 27(11):14791488. 
YANG Fan, HU Chunping, YAN Xuefeng. Particle swarm optimization algorithm of selfadaptive parameter based on ant system and its application[J]. Control Theory & Applications, 2010, 27(11): 14791488.
[9]ZHANG W J, XIE X F. DEPSO: hybrid particle swarm with differential evolution operator[C]//Proc of IEEE International Conference on System, Man and Cybernetic. Washington DC, USA, 2003: 38163821.
[10]HE S, WU Q H, WEN J Y, et al. A particle swarm optimizer with passive congregation[J]. BioSystems, 2004, 78: 135147.
[11]秦全德,李荣钧. 基于生物寄生行为的双种群粒子群算法[J]. 控制与决策, 2011, 26(4): 548552.
QIN Quande, LI Rongjun. Twopopulation particle swarm optimization algorithm based bioparasitic behaviour[J]. Control and Decision, 2011, 26(4): 548552.
[12]LIANG J J, QIN K, SUGANTHAN P N. Comprehensive learning particle swarm optimization for global optimization of multimodal functions[J]. IEEE Transactions on Evolutionary Computation, 2006, 6(3): 281295.
[13]HUANG H, QIN H, HAO Z F, et al. Exampledbased learning swarm optimization for continuous optimization [J]. Information Sciences, 2011, 182(1): 125138.
[14]CLERC M, KENNEDY J. The particle swarm: explosion, stability, and convergence in multi dimensional complex space[J]. IEEE Transactions on Evolutionary Computation, 2002, 6: 5873.
[15]SABAT S L, UDGATA S K. Integrated learning particle swarm optimizer for global optimization[J]. Applied Soft Computing, 2011, 11(1): 574584.
[16]WANG Y, LI B, WEISE T, et al. Selfadaptive learning based particle swarm optimization[J]. Information Sciences, 2011, 182(20): 45154538.
[17]PERAM T, VEERAMACHANENI K, MOHAN C K. Fitnessdistanceratio based particle swarm optimization [C]//Proc of the Swarm Intelligence Symposium. Indianapolis, USA, 2003: 174181.
[18]SUGANTHAN P N, HANSEN N, LIANG J J, et al. Problem definitions and evaluation criteria for the CEC 2005 special session on realparameter optimization[R/OL].http://www.ntu.edu. sg/home/EPNSugan.
[19]SALOMON R. Reevaluating genetic algorithm performance under coordinate rotation of benchmark functions[J]. Biosystems, 1996, 39: 263278.
[20]RATNAWEERA A, HALGAMUGE S K, WATSON H C. Selforganizing hierarchical particle swarm optimizer with timevarying acceleration coefficients[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 240255.
[21]王凌,李令莱,郑大钟. 非线性系统参数估计的一类有效搜索策略 [J]. 自动化学报, 2003, 29: 953958. 
WANG Ling, LI Lingtai, ZHENG Dazhong. A class of effective search strategies for parameter estimation of nonlinear systems[J]. Acta Automatica Sinica, 2003, 29:953958.

相似文献/References:

[1]蒋建国,吴 琼,夏 娜.自适应粒子群算法求解Agent联盟[J].智能系统学报,2007,2(02):69.
 JIANG Jian-guo,WU Qiong,XIA Na.Solving Agent coalition using adaptive particle swarm optimization algorithm[J].CAAI Transactions on Intelligent Systems,2007,2(06):69.
[2]王兆伟,肖 扬,刘湘黔.基于粒子群算法的MIMO CDMA平坦衰落信道均衡器[J].智能系统学报,2008,3(01):38.
 WANG Zhao-wei,XIAO Yang,LIU Xiang-qian.Application of particle swarm optimization in MIMO CDMA flat fading channel equalizers[J].CAAI Transactions on Intelligent Systems,2008,3(06):38.
[3]薛英花,田国会,吴 皓,等.智能空间中的服务机器人路径规划[J].智能系统学报,2010,5(03):260.
 XUE Ying-hua,TIAN Guo-hui,WU Hao,et al.Path planning for service robots in an intelligent space[J].CAAI Transactions on Intelligent Systems,2010,5(06):260.
[4]马胜蓝,叶东毅.一种带禁忌搜索的粒子并行子群最小约简算法[J].智能系统学报,2011,6(02):132.
 MA Shenglan,YE Dongyi.A minimum reduction algorithm based on parallel particle subswarm optimization with tabu search capability[J].CAAI Transactions on Intelligent Systems,2011,6(06):132.
[5]刘长平,叶春明.具有Lévy飞行特征的蝙蝠算法[J].智能系统学报,2013,8(03):240.
 LIU Changping,YE Chunming.Bat algorithm with the characteristics of Lévy flights[J].CAAI Transactions on Intelligent Systems,2013,8(06):240.
[6]孙文新,穆华平.自适应群体结构的粒子群优化算法[J].智能系统学报,2013,8(04):372.[doi:10.3969/j.issn.1673-4785.201211041]
 SUN Wenxin,MU Huaping.Particle swarm optimization based on self-adaptive population structure[J].CAAI Transactions on Intelligent Systems,2013,8(06):372.[doi:10.3969/j.issn.1673-4785.201211041]
[7]张俊玲,陈增强,张青.基于粒子群优化的Elman神经网络无模型控制[J].智能系统学报,2016,11(1):49.[doi:10.11992/tis.201507025]
 ZHANG Junling,CHEN Zengqiang,ZHANG Qing.Elman model-free control method based on particle swarm optimization algorithm[J].CAAI Transactions on Intelligent Systems,2016,11(06):49.[doi:10.11992/tis.201507025]
[8]拓守恒,邓方安,雍龙泉.改进教与学优化算法的LQR控制器优化设计[J].智能系统学报,2014,9(05):602.[doi:10.3969/j.issn.1673-4785.201304071]
 TUO Shouheng,DENG Fangan,YONG Longquan.Optimal design of a linear quadratic regulator (LQR) controller based on the modified teaching-learning-based optimization algorithm[J].CAAI Transactions on Intelligent Systems,2014,9(06):602.[doi:10.3969/j.issn.1673-4785.201304071]
[9]李雪,蒋树强.智能交互的物体识别增量学习技术综述[J].智能系统学报,2017,12(02):140.[doi:10.11992/tis.201701006]
 LI Xue,JIANG Shuqiang.Incremental learning and object recognition system based on intelligent HCI: a survey[J].CAAI Transactions on Intelligent Systems,2017,12(06):140.[doi:10.11992/tis.201701006]
[10]钱伟懿,李明.依概率收敛的改进粒子群优化算法[J].智能系统学报,2017,12(04):511.[doi:10.11992/tis.201610004]
 QIAN Weiyi,LI Ming.Improved particle swarm optimization algorithmwith probability convergence[J].CAAI Transactions on Intelligent Systems,2017,12(06):511.[doi:10.11992/tis.201610004]

备注/Memo

备注/Memo:
收稿日期: 2012-05-07.
网络出版日期:2012-11-16.
基金项目:国家自然科学基金资助项目(71071057,71001072);广东省自然科学基金资助项目(S2011010001337).
通信作者:秦全德.
E-mail:qinquande@gmail.com.
作者简介:
秦全德,男,1979年生,讲师,博士,主要研究方向为智能计算及其应用、管理决策与优化等发表学术论文10余篇.
更新日期/Last Update: 2013-03-19