[1]乔俊飞,逄泽芳,韩红桂.基于改进粒子群算法的污水处理过程神经网络优化控制[J].智能系统学报,2012,7(05):429-436.
 QIAO Junfei,PANG Zefang,HAN Honggui.Neural network optimal control for wastewater treatment processbased on APSO[J].CAAI Transactions on Intelligent Systems,2012,7(05):429-436.
点击复制

基于改进粒子群算法的污水处理过程神经网络优化控制(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第7卷
期数:
2012年05期
页码:
429-436
栏目:
出版日期:
2012-10-25

文章信息/Info

Title:
Neural network optimal control for wastewater treatment processbased on APSO
文章编号:
1673-4785(2012)05-0429-08
作者:
乔俊飞逄泽芳韩红桂
北京工业大学 电子信息与控制工程学院,北京 100124
Author(s):
QIAO Junfei PANG Zefang HAN Honggui 
College of Electronic and Control Engineering, Beijing University of Technology, Beijing 100124, China
关键词:
污水处理智能控制优化控制粒子群算法神经网络
Keywords:
wastewater treatment intelligent control optimal control particle swarm optimzation neural network
分类号:
TP18
文献标志码:
A
摘要:
针对活性污泥法污水处理过程高能耗的问题,综合考虑污水处理出水水质和生化反应参数之间的关系,文中设计了一种智能优化控制系统.该系统以国际水协(IWA)开发的基准仿真模型BSM1为研究对象,利用改进粒子群算法优化BSM1第2分区的硝态氮浓度和第5分区的溶解氧浓度、混合液悬浮物固体浓度的设定值;同时利用感知器神经网络预测污水处理过程的输出,在出水水质达标的前提下降低污水处理能耗.仿真实验结果表明,系统总能耗相比闭环控制策略降低4.614%,该神经网络智能优化控制系统能够有效降低污水处理的能耗.
Abstract:
Due to the high energy consumption of activated sludge wastewater treatment process, a new intelligent optimal control system is designed in this paper by considering the effluent quality and the relationship between the biochemical reaction parameters. This control system is used for the benchmark simulation model (BSM1) proposed by the International Water Association (IWA). The APSO is utilized to optimize the dissolved oxygen and MLSS levels in the fifth compartment and the nitrate level in the second anoxic tank. Meanwhile, the outputs of BSM1 are predicted by the neural network, and the energy consumption is cut down whthin the effluent water quality standarts. The simulation results show that, comparing to the clooseloop control strategy, the totle energy consumption of this proposed optimal control system is lowered by 4.614%, the neural network optimal control strategy can significantly reduce the energy consumption of activated sludge wastewater treatment process.

参考文献/References:

[1]中华人民共和国住房和城乡建设部.关于全国城镇污水处理设施2011年第一季度建设和运行情况的通报[EB/OL]. (20110507)[20120516]. http://www.mohurd.gov.cn.
[2]PIOTROWSKI R, BRDYS M A. Hierarchical dissolved oxygen control for activated sludge processes[J]. Control Engineering Practice, 2008, 16 (1): 114131.
[3]CHANDRAMOULI V, BRION G, NEELAKANTAN T R, et al. Backfilling missing microbial concentrations in a riverine database using artificial neural networks[J]. Water Research, 2007, 41 (1): 217227.
[4]BERAUD B, STEYER J P. Towards a global multi objective optimization of wastewater treatment plant based on modeling and genetic algorithms[J]. Water Science & Technology, 2007, 56(9): 109116.
[5]张平,苑明哲,王宏.基于国际评价基准的溶解氧控制方法研究[J].信息与控制, 2007, 36(2): 199203. 
ZHANG Ping, YUAN Mingzhe, WANG Hong. Study on dissolved oxygen control method based on international evaluation benchmark[J]. Information and Control, 2007, 36(2): 199203.
[6]熊伟清,刘明达,魏平.遗传算法的基因定位算子[J].控制理论与应用, 2005, 22(3): 491494. 
XIONG Weiqing, LIU Mingda, WEI Ping. Geneorientation operator for genetic algorithm[J]. Control Theory & Applications, 2005, 22(3): 491494.
[7]ALIREZA A. PSO with adaptive mutation and inertia weight and its application in parameter estimation of dynamic systems[J]. Acta Automatica Sinica, 2011, 37(5): 541549.
[8]XIAO Renyue, YU Jinhai. A newly selfadaptive strategy for the PSO[C]//Proceedings of the 2008 Fourth International Conference on Natural Computation. Washington, DC, USA: IEEE Computer Society, 2008: 396400.
[9]张顶学,关治洪,刘新芝.一种动态改变惯性权重的自适应粒子群算法[J].控制与决策, 2008, 23(11): 12531257. 
ZHANG Dingxue, GUAN Zhihong, LIU Xinzhi. Adaptive particle swarm optimization algorithm with dynamically changing inertia weight[J]. Control and Decision, 2008, 23(11): 12531257.
[10]苏守宝,曹喜滨,孔敏.群活性与粒子群优化的稳定性分析[J].控制理论与应用, 2010, 27(10): 14111417. 
SUN Shoubao, CAO Xibin, KONG Min. Stability analysis of particle swarm optimization using swarm activity[J]. Control Theory & Applications, 2010, 27(10): 14111417.
[11]李宁,孙德宝,邹彤,等.基于差分方程的PSO算法粒子运动轨迹分析[J].计算机学报, 2006, 29(11): 20502062. 
LI Ning, SUN Debao, ZOU Tong, et al. An analysis for a particle′s trajectory of PSO based on difference equation[J]. Chinese Journal of Computers, 2006, 29(11): 20502062.
[12]熊智挺,谭阳红,易如方,等.一种并行的自适应量子粒子群算法[J].计算机系统应用, 2011, 20(8): 4771. 
XIONG Zhiting, TAN Yanghong, YI Rufang, et al. Method of parallel adaptive quantum particle swarm optimization[J]. Computer System and Applications, 2011, 20(8): 4771.
[13]魏建香,孙越泓,苏新宁.一种基于免疫选择的粒子群优化算法[J].南京大学学报:自然科学版, 2010, 46(1): 19. 
WEI Jianxiang, SUN Yuehong, SU Xinning. A novel particle swarm optimization based on immune selection[J]. Journal of Nanjing University: Natural Sciences, 2010, 46(1): 19.
[14]COPP J B. The COST simulation benchmark: description and simulator manual[M]. Luxembourg: Office for Publications of the European Community, 2001.
[15]史雄伟,乔俊飞,苑明哲.基于改进粒子群算法的污水处理过程优化控制[J].信息与控制, 2011, 40(5): 698703. 
SHI Xiongwei, QIAO Junfei, YUAN Mingzhe. Optimal control for wastewater treatment process based on improved particle swarm optimization algorithm[J]. Information and Control, 2011, 40(5): 698703.

相似文献/References:

[1]徐玉如,庞永杰,甘 永,等.智能水下机器人技术展望[J].智能系统学报,2006,1(01):9.
 XU Yu-ru,PANG Yong-jie,GAN Yong,et al.AUV—state-of-the-art and prospect[J].CAAI Transactions on Intelligent Systems,2006,1(05):9.
[2]乔俊飞,郭迎春.污水处理净化过程的三维细胞自动机动态模拟[J].智能系统学报,2010,5(05):419.[doi:10.3969/j.issn.1673-4785.2010.05.007]
 QIAO Jun-fei,GUO Ying-chun.Dynamic simulation of the sewage purification process based on three-dimensional cellular automata[J].CAAI Transactions on Intelligent Systems,2010,5(05):419.[doi:10.3969/j.issn.1673-4785.2010.05.007]
[3]孙宁,方勇纯.一类欠驱动系统的控制方法综述[J].智能系统学报,2011,6(03):200.
 SUN Ning,FANG Yongchun.A review for the control of a class of underactuated systems[J].CAAI Transactions on Intelligent Systems,2011,6(05):200.
[4]曾华琳,黄雨轩,晁飞,等.书写机器人研究综述[J].智能系统学报,2016,11(1):15.[doi:10.11992/tis.201507067]
 ZENG Hualin,HUANG Yuxuan,CHAO Fei,et al.Survey of robotic calligraphy research[J].CAAI Transactions on Intelligent Systems,2016,11(05):15.[doi:10.11992/tis.201507067]
[5]张伟,乔俊飞.神经网络的污水处理过程多目标优化控制方法[J].智能系统学报,2016,11(5):594.[doi:10.11992/tis.201512022]
 ZHANG Wei,QIAO Junfei.Multi-objective optimization control for wastewatertreatment processing based on neural network[J].CAAI Transactions on Intelligent Systems,2016,11(05):594.[doi:10.11992/tis.201512022]
[6]黄心汉.A3I:21世纪科技之光[J].智能系统学报,2016,11(6):835.[doi:10.11992/tis.201605022]
 HUANG Xinhan.A3I: the star of science and technology for the 21st century[J].CAAI Transactions on Intelligent Systems,2016,11(05):835.[doi:10.11992/tis.201605022]
[7]刘经纬,赵辉,周瑞,等.规则推理与神经计算智能控制系统改进及比较[J].智能系统学报,2017,12(06):823.[doi:10.11992/tis.201602015]
 LIU Jingwei,ZHAO Hui,ZHOU Rui,et al.Improvement and comparison research between intelligent control systems based on rule based reasoning and neural computation AI methods[J].CAAI Transactions on Intelligent Systems,2017,12(05):823.[doi:10.11992/tis.201602015]
[8]鲍毅,楼凤丹,王万良.需求侧管理下智能家庭用电多目标优化控制[J].智能系统学报,2018,13(01):125.[doi:10.11992/tis.201705030]
 BAO Yi,LOU Fengdan,WANG Wanliang.Multiobjective optimization control of intelligent household electricity with demand management[J].CAAI Transactions on Intelligent Systems,2018,13(05):125.[doi:10.11992/tis.201705030]
[9]许进超,杨翠丽,乔俊飞,等.基于自组织模糊神经网络溶解氧控制方法研究[J].智能系统学报,2018,13(06):905.[doi:10.11992/tis.201801019]
 XU Jinchao,YANG Cuili,QIAO Junfei,et al.Dissolved oxygen concentration control method based on self-organizing fuzzy neural network[J].CAAI Transactions on Intelligent Systems,2018,13(05):905.[doi:10.11992/tis.201801019]

备注/Memo

备注/Memo:
收稿日期: 2012-05-21.
网络出版日期:2012-09-25.
基金项目:国家自然科学基金重点资助项目(61034008);北京市自然科学基金资助项目(4122006);北京市“创新人才建设计划”项目(PHR201006103);教育部新世纪优秀人才支持计划项目(NCET080616);北京市教育委员会科技计划项目 (KZ201010005005).
通信作者:韩红桂.
E-mail: isibox@sina.com.
作者简介:
乔俊飞,男,1968年生,教授,博士生导师,博士,主要研究方向为智能控制、污水处理过程建模与优化控制、智能系统分析与设计.主持完成或承担国家自然科学基金项目4项、国家“863”计划项目2项、教育部博士点基金与北京市自然科学基金等省部级项目共9项.2011年获得教育部高等学校科学研究优秀成果奖科学技术进步奖一等奖.曾先后入选北京市科技新星计划、北京市优秀人才培养计划、教育部新世纪优秀人才计划、北京市创新人才建设计划等.发表学术论文100余篇,其中被SCI检索12篇,EI检索60余篇,获得国家发明专利授权9项、软件著作权8项.
逄泽芳,女,1986年生,硕士研究生,主要研究方向为智能控制理论、方法与应用.
韩红桂,男,1983年生,讲师,主要研究方向为神经网络自组织设计及城市污水处理过程的建模和控制.
更新日期/Last Update: 2012-11-13