[1]许进超,杨翠丽,乔俊飞,等.基于自组织模糊神经网络溶解氧控制方法研究[J].智能系统学报,2018,13(6):905-912.[doi:10.11992/tis.201801019]
 XU Jinchao,YANG Cuili,QIAO Junfei,et al.Dissolved oxygen concentration control method based on self-organizing fuzzy neural network[J].CAAI Transactions on Intelligent Systems,2018,13(6):905-912.[doi:10.11992/tis.201801019]
点击复制

基于自组织模糊神经网络溶解氧控制方法研究

参考文献/References:
[1] SANTíN I, PEDRET C, VILANOVA R, et al. Advanced decision control system for effluent violations removal in wastewater treatment plants[J]. Control engineering practice, 2016, 49:60-75.
[2] ?MAND L, OLSSON G, CARLSSON B. Aeration control-a review[J]. Water science and technology, 2013, 67(11):2374-2398
[3] WAHAB N A, KATEBI R, BALDERUD J. Multivariable PID control design for activated sludge process with nitrification and denitrification[J]. Biochemical engineering journal, 2009, 45(3):239-248.
[4] VRECKO D, HVALA N, KOCIJAN J. Wastewater treatment benchmark:what can be achieved with simple control?[J]. Water science and technology, 2002, 45(4/5):127-134.
[5] AYESA E, DE LA SOTA A, GRAU P, et al. Supervisory control strategies for the new WWTP of Galindo-Bilbao:the long run from the conceptual design to the full-scale experimental validation[J]. Water science and technology, 2006, 53(4/5):193-201.
[6] 潘海鹏, 徐玉颖. 基于BP网络的流浆箱双变量PID解耦控制[J]. 化工学报, 2010, 61(8):2154-2158 PAN Haipeng, XU Yuying. Double variable PID decoupling control of headbox based on BP neural network[J]. CIESC journal, 2010, 61(8):2154-2158
[7] KOTZAPETROS A D, PARASKEVAS P A, STASINAKIS A S. Design of a modern automatic control system for the activated sludge process in wastewater treatment[J]. Chinese journal of chemical engineering, 2015, 23(8):1340-1349.
[8] 刘超彬, 乔俊飞, 张芳芳. 污水处理过程中溶解氧的模糊神经网络控制[J]. 山东大学学报:工学版, 2005, 35(3):83-87 LIU Chaobin, QIAO Junfei, ZHANG Fangfang. Fuzzy neural network controls of dissolved oxygen in the wastewater treatment processes[J]. Journal of Shandong university:engineering science, 2005, 35(3):83-87
[9] HUANG Mingzhi, WAN Jinquan, MA Yongwen, et al. Control rules of aeration in a submerged biofilm wastewater treatment process using fuzzy neural networks[J]. Expert systems with applications, 2009, 36(7):10428-10437.
[10] FU Wentao, QIAO Junfei, HAN Gaitang, et al. Dissolved oxygen control system based on the T-S fuzzy neural network[C]//Proceedings of 2015 International Joint Conference on Neural Networks. Killarney, Ireland, 2015:1-7.
[11] 张伟, 乔俊飞, 李凡军. 溶解氧浓度的直接自适应动态神经网络控制方法[J]. 控制理论与应用, 2015, 32(1):115-121 ZHANG Wei, QIAO Junfei, LI Fanjun. Direct adaptive dynamic neural network control for dissolved oxygen concentration[J]. Control theory and applications, 2015, 32(1):115-121
[12] HABBI H, BOUDOUAOUI Y, KARABOGA D, et al. Self-generated fuzzy systems design using artificial bee colony optimization[J]. Information sciences, 2015, 295:145-159.
[13] JEPPSSON U, PONS M N. The COST benchmark simulation model-current state and future perspective[J]. Control engineering practice, 2004, 12(3):299-304.
[14] HAN Honggui, QIAO Junfei. A self-organizing fuzzy neural network based on a growing-and-pruning algorithm[J]. IEEE transactions on fuzzy systems, 2010, 18(6):1129-1143.
[15] FIGUEROA-GARCíA J C, OCHOA-REY C M, AVELLANEDA-GONZáLEZ J A. Rule generation of fuzzy logic systems using a self-organized fuzzy neural network[J]. Neurocomputing, 2015, 151:955-962.
[16] HSU Chunfei. Self-organizing adaptive fuzzy neural control for a class of nonlinear systems[J]. IEEE transactions on neural networks, 2007, 18(4):1232-1241.
[17] WU Shiqian, ER M J, CAO Yang. A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks[J]. IEEE transactions on fuzzy systems, 2001, 9(4):578-594.
[18] DE JESúS RUBIO J. SOFMLS:online self-organizing fuzzy modified least-squares network[J]. IEEE transactions on fuzzy systems, 2009, 17(6):1296-1309.
[19] WANG Ning, ER M J, MENG Xianyao. A fast and accurate online self-organizing scheme for parsimonious fuzzy neural networks[J]. Neurocomputing, 2009, 72(16/17/18):3818-3829.
[20] LENG Gang, MCGINNITY T M, PRASAD G. Design for self-organizing fuzzy neural networks based on genetic algorithms[J]. IEEE transactions on fuzzy systems, 2006, 14(6):755-766.
相似文献/References:
[1]乔俊飞,郭迎春.污水处理净化过程的三维细胞自动机动态模拟[J].智能系统学报,2010,5(5):419.[doi:10.3969/j.issn.1673-4785.2010.05.007]
 QIAO Jun-fei,GUO Ying-chun.Dynamic simulation of the sewage purification process based on three-dimensional cellular automata[J].CAAI Transactions on Intelligent Systems,2010,5():419.[doi:10.3969/j.issn.1673-4785.2010.05.007]
[2]乔俊飞,逄泽芳,韩红桂.基于改进粒子群算法的污水处理过程神经网络优化控制[J].智能系统学报,2012,7(5):429.
 QIAO Junfei,PANG Zefang,HAN Honggui.Neural network optimal control for wastewater treatment processbased on APSO[J].CAAI Transactions on Intelligent Systems,2012,7():429.
[3]张伟,乔俊飞.神经网络的污水处理过程多目标优化控制方法[J].智能系统学报,2016,11(5):594.[doi:10.11992/tis.201512022]
 ZHANG Wei,QIAO Junfei.Multi-objective optimization control for wastewatertreatment processing based on neural network[J].CAAI Transactions on Intelligent Systems,2016,11():594.[doi:10.11992/tis.201512022]

备注/Memo

收稿日期:2018-01-11。
基金项目:国家自然科学基金项目(61533002,61603012);北京市教育委员会科研计划项目(KM201710005025).
作者简介:许进超,女,1992年生,硕士研究生,主要研究方向为污水处理过程智能控制;杨翠丽,女,1986年生,讲师,博士研究生,主要研究方向为进化算法、智能信息处理。发表学术论文10余篇,其中SCI检索7篇,EI检索12篇;乔俊飞,男,1968年生,教授,博士生导师,主要研究方向为智能信息处理、智能优化控制。近年发表学术论文近70篇,被SCI检索15篇。获教育部科技进步奖一等奖和北京市科学技术奖三等奖各1项,获得授权国家发明专利12项。
通讯作者:许进超.E-mail:winadream@163.com

更新日期/Last Update: 2018-12-25
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134