[1]唐玉凯,张楠,童向荣,等.不完备决策系统下的多特定类广义决策约简[J].智能系统学报,2019,14(06):1199-1208.[doi:10.11992/tis.201905059]
 TANG Yukai,ZHANG Nan,TONG Xiangrong,et al.The multi-class-specific generalized decision preservation reduction in incomplete decision systems[J].CAAI Transactions on Intelligent Systems,2019,14(06):1199-1208.[doi:10.11992/tis.201905059]
点击复制

不完备决策系统下的多特定类广义决策约简(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第14卷
期数:
2019年06期
页码:
1199-1208
栏目:
出版日期:
2019-11-05

文章信息/Info

Title:
The multi-class-specific generalized decision preservation reduction in incomplete decision systems
作者:
唐玉凯12 张楠12 童向荣12 张小峰3
1. 烟台大学 数据科学与智能技术山东省高校重点实验室, 山东 烟台 264005;
2. 烟台大学 计算机与控制工程学院, 山东 烟台 264005;
3. 鲁东大学 信息与电气工程学院, 山东 烟台 264025
Author(s):
TANG Yukai12 ZHANG Nan12 TONG Xiangrong12 ZHANG Xiaofeng3
1. Key Lab for Data Science and Intelligence Technology of Shandong Higher Education Institutes, Yantai University, Yantai 264005, China;
2. School of Computer and Control Engineering, Yantai University, Yantai 264005, China;
3. School of Information and Electrical Engineering, Ludong University, Yantai 264025, China
关键词:
粗糙集属性约简不完备决策系统相容关系多特定类广义决策约简差别矩阵
Keywords:
rough setsattribute reductionincompletedecision systemstolerance relationmulti-class-specificgeneralized decision preservation reductiondiscernibility matrix
分类号:
TP181
DOI:
10.11992/tis.201905059
摘要:
属性约简是粗糙集理论研究中最重要的领域之一。经典的不完备决策系统广义决策约简关注决策系统中的所有决策类,而在实际应用中,决策者往往只关注一个或者几个特定决策类。针对以上问题,提出基于多特定类的不完备决策系统广义决策约简理论框架。首先,定义了单特定类的不完备决策系统广义决策约简的相关概念,提出并证明相关定理,构造相应差别矩阵和区分函数。其次,将单特定类的广义决策约简推广到多特定类,提出基于差别矩阵的多特定类的不完备决策系统广义决策约简算法。最后,采用6组UCI数据集进行实验。实验结果表明,相对全部决策类数量,当选定特定类数量较少时,平均约简长度有不同程度的缩短,占用空间有所减小,约简效率有不同程度的提升。
Abstract:
Attribute reduction has an important place in rough set theory. The method of classical generalized decision preservation reduction in incomplete decision systems is to find the reducts of all decision classes. In practical applications, however, the decision makers may focus on one or several decision classes. To fill this gap, the theoretical framework of multi-class-specific generalized decision preservation reduction in incomplete decision systems is proposed. First, the single-class-specific generalized decision preservation reduction in incomplete decision systems is defined. Related theorems are proposed and proven, and the corresponding discernibility matrix and function are constructed. Then, the single-class-specific generalized decision preservation reduction is extended to the multi-class-specific generalized decision preservation reduction in incomplete decision systems. The algorithm of the multi-class-specific generalized decision preservation reduction based on discernibility matrix in incomplete decision systems (MGDRDM) is proposed. Finally, six datasets from UCI were used for experiments. The experimental results show that when the number of selected specific classes is less than all the decision classes, the average length of reducts will be shortened to varying degrees, the space used will be reduced, and the time efficiency will be roughly improved.

参考文献/References:

[1] PAWLAK Z. Rough sets[J]. International journal of computer and information sciences, 1982, 11(5):341-356.
[2] PAWLAK Z. Rough sets:theoretical aspects of reasoning about data[M]. Dordrecht:Kluwer Academic Publishers, 1991.
[3] ZHANG Qinghua, ZHANG Pei, WANG Guoyin. Research on approximation set of rough set based on fuzzy similarity[J]. Journal of intelligent and fuzzy systems, 2017, 32(3):2549-2562.
[4] 王国胤, 姚一豫, 于洪. 粗糙集理论与应用研究综述[J]. 计算机学报, 2009, 32(7):1229-1246 WANG Guoyin, YAO Yiyu, YU Hong. A survey on rough set theory and applications[J]. Chinese journal of computers, 2009, 32(7):1229-1246
[5] 于洪, 王国胤, 姚一豫. 决策粗糙集理论研究现状与展望[J]. 计算机学报, 2015, 38(8):1628-1639 YU Hong, WANG Guoyin, YAO Yiyu. Current research and future perspectives on decision-theoretic rough sets[J]. Chinese journal of computers, 2015, 38(8):1628-1639
[6] 张文修, 米据生, 吴伟志. 不协调目标信息系统的知识约简[J]. 计算机学报, 2003, 26(1):12-18 ZHANG Wenxiu, MI Jusheng, WU Weizhi. Knowledge reductions in inconsistent information systems[J]. Chinese journal of computers, 2003, 26(1):12-18
[7] MIAO D Q, ZHAO Y, YAO Y Y, et al. Relative reducts in consistent and inconsistent decision tables of the Pawlak rough set model[J]. Information sciences, 2009, 179(24):4140-4150.
[8] HU Qinghua, ZHANG Lingjun, ZHOU Yucan, et al. Large-scale multimodality attribute reduction with multi-kernel fuzzy rough sets[J]. IEEE transactions on fuzzy systems, 2018, 26(1):226-238.
[9] QIAN Yuhua, LIANG Jiye, PEDRYCZ W, et al. Positive approximation:an accelerator for attribute reduction in rough set theory[J]. Artificial intelligence, 2010, 174(9/10):597-618.
[10] WU Weizhi, QIAN Yuhua, LI Tongjun, et al. On rule acquisition in incomplete multi-scale decision tables[J]. Information sciences, 2017, 378:282-302.
[11] YAO Yiyu, ZHANG Xianyong. Class-specific attribute reducts in rough set theory[J]. Information sciences, 2017, 418/419:601-618.
[12] LI Jingzheng, YANG Xibei, SONG Xiaoning, et al. Neighborhood attribute reduction:a multi-criterion approach[J]. International journal of machine learning and cybernetics, 2019, 10(4):731-742.
[13] LIANG Jiye, XU Zongben. The algorithm on knowledge reduction in incomplete information systems[J]. International journal of uncertainty, fuzziness and knowledge-based systems, 2002, 10(1):95-103.
[14] 周献中, 黄兵, 李华雄, 等. 不完备信息系统知识获取的粗糙集理论与方法[M]. 南京:南京大学出版社, 2010.
[15] QIAN Yuhua, LIANG Jiye, LI Deyu, et al. Approximation reduction in inconsistent incomplete decision tables[J]. Knowledge-based systems, 2010, 23(5):427-433.
[16] SHU Wenhao, QIAN Wenbin. A fast approach to attribute reduction from perspective of attribute measures in incomplete decision systems[J]. Knowledge-based systems, 2014, 72:60-71.
[17] QIAN Wenbin, SHU Wenhao, XIE Yonghong, et al. Feature selection using compact discernibility matrix-based approach in dynamic incomplete decision system[J]. Journal of information science and engineering, 2015, 31(2):509-527.
[18] XIE Xiaojun, QIN Xiaolin. A novel incremental attribute reduction approach for dynamic incomplete decision systems[J]. International journal of approximate reasoning, 2018, 93:443-462.
[19] SKOWRON A. Boolean reasoning for decision rules generation[C]//Proceedings of the 7th International Symposium on Methodologies for Intelligent Systems. Trondheim, Norway, 1993:295-305.
[20] KRYSZKIEWICZ M. Rough set approach to incomplete information systems[J]. Information sciences, 1998, 112(1/2/3/4):39-49.
[21] SKOWRON A, RAUSZER C. The discernibility matrices and functions in information systems[M]//S?OWI?SKI R. Intelligent Decision Support:Handbook of Applications and Advances of the Rough Sets Theory. Dordrecht, Netherlands:Springer, 1992:331-362.
[22] 尹继亮, 张楠, 赵立威, 等. 区间值决策系统的局部属性约简[J]. 计算机科学, 2018, 45(7):178-185 YIN Jiliang, ZHANG Nan, ZHAO Liwei, et al. Local attribute reduction in interval-valued decision systems[J]. Computer science, 2018, 45(7):178-185
[23] QIAN Yuhua, LIANG Xinyan, WANG Qi, et al. Local rough set:a solution to rough data analysis in big data[J]. International journal of approximate reasoning, 2018, 97:38-63.
[24] LIU Guilong, HUA Zheng, ZOU Jiyang. Local attribute reductions for decision tables[J]. Information sciences, 2018, 422:204-217.

相似文献/References:

[1]尹林子,阳春华,桂卫华,等.规则分层约简算法[J].智能系统学报,2008,3(06):492.
 YIN Lin-zi,YANG Chun-hua,GUI Wei-hua,et al.Hierarchical reduction of rules[J].CAAI Transactions on Intelligent Systems,2008,3(06):492.
[2]毋 非,封化民,申晓晔.容错粗糙模型的事件检测研究[J].智能系统学报,2009,4(02):112.
 WU Fei,FENG Hua-min,SHEN Xiao-ye.Research on event detection based on the tolerance rough set model[J].CAAI Transactions on Intelligent Systems,2009,4(06):112.
[3]王国胤,张清华,胡 军.粒计算研究综述[J].智能系统学报,2007,2(06):8.
 WANG Guo-yin,ZHANG Qing-hua,HU Jun.An overview of granular computing[J].CAAI Transactions on Intelligent Systems,2007,2(06):8.
[4]裴小兵,吴 涛,陆永忠.最小化决策规则集的计算方法[J].智能系统学报,2007,2(06):65.
 PEI Xiao-bing,WU Tao,LU Yong-zhong.Calculating method for a minimal set of decision rules[J].CAAI Transactions on Intelligent Systems,2007,2(06):65.
[5]张志飞,苗夺谦.基于粗糙集的文本分类特征选择算法[J].智能系统学报,2009,4(05):453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
 ZHANG Zhi-fei,MIAO Duo-qian.Feature selection for text categorization based on rough set[J].CAAI Transactions on Intelligent Systems,2009,4(06):453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
[6]顾成杰,张顺颐,杜安源.结合粗糙集和禁忌搜索的网络流量特征选择[J].智能系统学报,2011,6(03):254.
 GU Chengjie,ZHANG Shunyi,DU Anyuan.Feature selection of network traffic using a rough set and tabu search[J].CAAI Transactions on Intelligent Systems,2011,6(06):254.
[7]杨成东,邓廷权.综合属性选择和删除的属性约简方法[J].智能系统学报,2013,8(02):183.[doi:10.3969/j.issn.1673-4785.201209056]
 YANG Chengdong,DENG Tingquan.An approach to attribute reduction combining attribute selection and deletion[J].CAAI Transactions on Intelligent Systems,2013,8(06):183.[doi:10.3969/j.issn.1673-4785.201209056]
[8]周丹晨.采用粒计算的属性权重确定方法[J].智能系统学报,2015,10(02):273.[doi:10.3969/j.issn.1673-4785.201312008]
 ZHOU Danchen.A method for ascertaining the weight of attributes based on granular computing[J].CAAI Transactions on Intelligent Systems,2015,10(06):273.[doi:10.3969/j.issn.1673-4785.201312008]
[9]陈坚,陈健,邵毅明,等.粗糙集的过饱和多交叉口协同优化模型研究[J].智能系统学报,2015,10(5):783.[doi:10.11992/tis.201406045]
 CHEN Jian,CHEN Jian,SHAO Yiming,et al.Collaborative optimization model for oversaturated multiple intersections based on the rough set theory[J].CAAI Transactions on Intelligent Systems,2015,10(06):783.[doi:10.11992/tis.201406045]
[10]王金英,韩晓冰,王艳平.二型直觉模糊粗糙集[J].智能系统学报,2015,10(6):943.[doi:10.11992/tis.201412013]
 WANG Jinying,HAN Xiaobing,WANG Yanping.Type-2 intuitionistic fuzzy rough sets[J].CAAI Transactions on Intelligent Systems,2015,10(06):943.[doi:10.11992/tis.201412013]
[11]伞 冶,叶玉玲.粗糙集理论及其在智能系统中的应用[J].智能系统学报,2007,2(02):40.
 SAN Ye,YE Yu-ling.Rough set theory and its application in the intelligent systems[J].CAAI Transactions on Intelligent Systems,2007,2(06):40.
[12]马胜蓝,叶东毅.一种带禁忌搜索的粒子并行子群最小约简算法[J].智能系统学报,2011,6(02):132.
 MA Shenglan,YE Dongyi.A minimum reduction algorithm based on parallel particle subswarm optimization with tabu search capability[J].CAAI Transactions on Intelligent Systems,2011,6(06):132.
[13]钱进,朱亚炎.面向成组对象集的增量式属性约简算法[J].智能系统学报,2016,11(4):496.[doi:10.11992/tis.201606005]
 QIAN Jin,ZHU Yayan.An incremental attribute reduction algorithm for group objects[J].CAAI Transactions on Intelligent Systems,2016,11(06):496.[doi:10.11992/tis.201606005]
[14]冯丹,黄洋,石云鹏,等.连续型数据的辨识矩阵属性约简方法[J].智能系统学报,2017,12(03):371.[doi:10.11992/tis.201704032]
 FENG Dan,HUANG Yang,SHI Yunpeng,et al.A discernibility matrix-based attribute reduction for continuous data[J].CAAI Transactions on Intelligent Systems,2017,12(06):371.[doi:10.11992/tis.201704032]
[15]高学义,张楠,童向荣,等.广义分布保持属性约简研究[J].智能系统学报,2017,12(03):377.[doi:10.11992/tis.201704025]
 GAO Xueyi,ZHANG Nan,TONG Xiangrong,et al.Research on attribute reduction using generalized distribution preservation[J].CAAI Transactions on Intelligent Systems,2017,12(06):377.[doi:10.11992/tis.201704025]
[16]陈曼如,张楠,童向荣,等.集值信息系统的快速正域约简[J].智能系统学报,2019,14(03):471.[doi:10.11992/tis.201804059]
 CHEN Manru,ZHANG Nan,TONG Xiangrong,et al.Quick positive region reduction in set-valued information systems[J].CAAI Transactions on Intelligent Systems,2019,14(06):471.[doi:10.11992/tis.201804059]
[17]黄琴,钱文彬,王映龙,等.代价敏感数据的多标记特征选择算法[J].智能系统学报,2019,14(05):929.[doi:10.11992/tis.201807027]
 HUANG Qin,QIAN Wenbin,WANG Yinglong,et al.Multi-label feature selection algorithm for cost-sensitive data[J].CAAI Transactions on Intelligent Systems,2019,14(06):929.[doi:10.11992/tis.201807027]

备注/Memo

备注/Memo:
收稿日期:2019-05-28。
基金项目:国家自然科学基金项目(61572418,61572419,61873117,61403329);山东省自然科学基金项目(ZR2018BA004,ZR2016FM42).
作者简介:唐玉凯,男,1996年生,硕士研究生,主要研究方向为粗糙集、数据挖掘与机器学习;张楠,男,1979年生,讲师,主要研究方向为粗糙集、认知信息学与人工智能;童向荣,男,1975年生,教授,主要研究方向为多Agent系统、分布式人工智能与数据挖掘技术。主持国家自然科学基金面上项目2项,发表学术论文50余篇。
通讯作者:张楠.E-mail:zhangnan0851@163.com
更新日期/Last Update: 2019-12-25