[1]陈 杰,辛 斌,窦丽华.关于智能优化方法的集聚性与弥散性问题[J].智能系统学报,2007,2(02):48-56.
 CHEN Jie,XIN Bin,DOU Li-hua.Centralization and decentralization of intelligent optimization[J].CAAI Transactions on Intelligent Systems,2007,2(02):48-56.
点击复制

关于智能优化方法的集聚性与弥散性问题(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第2卷
期数:
2007年02期
页码:
48-56
栏目:
出版日期:
2007-04-25

文章信息/Info

Title:
Centralization and decentralization of intelligent optimization
文章编号:
1673-4785(2007)02-0048-09
作者:
陈 杰辛 斌窦丽华
北京理工大学信息科学技术学院,北京100081
Author(s):
CHEN JieXIN BinDOU Li-hua
School of Information Science and Technology, Beijing Institute of Technology, Beijing 10008 1, China
关键词:
智能优化方法集聚性与弥散性机制融合算法进化
Keywords:
intelligent optimization centralization and decentralization mechani sm combination algorithm evolution
分类号:
TP18
文献标志码:
A
摘要:
在简要叙述智能优化方法中机制产生的原理和方式的基础上,引入了智能优化算法所应具有的2种基本属性——集聚性和弥散性.描述了二者与算法收敛性的关系,指出了二者对于分析和构造算法的重要性,并结合实例进行了分析.最后根据算法的集聚性与弥散性,从算法群体进化角度研究了算法中的机制融合方法并结合实例进行了说明
Abstract:
On the basis of a brief analysis of principles and means for the gener ation of mechanisms in intelligent optimization, centralization and decentraliza tion, that are basic properties of intelligent optimization, are introduced. The relationship between these two properties and convergence is described. The sig nificance of these two properties to analysis and construction of algorithms is proposed. Finally, using an example based on the centralization and decentraliza tion of intelligent optimization, the mechanism combination of algorithm is expl ored from the point of view of population evolution. The practical examples are given.

参考文献/References:

[1]METROPOLIS N, ROSENBLUTH A, ROSENBLUTH M,et al. Equation of state c a lculations by fast computing machines[J]. Journal of Chemical Physics, 1953, 2 1:108 7-1092.
[2]HOLLAND J H. Adaptation in natural and artificial systems[M]. Ann Arbor: The University of Michigan Press, 1975.
[3]黄席樾, 张著洪, 何传江,等. 现代智能算法理论及应用[M].北京:科学出版社, 2 005. 
[4]COLONI A, DORIGO M, MANIEZZO V. Distributed optimization by ant colonie s[ A]. Proceeding of 1st European Conference of Artificial Life[C]. Paris, Franc e,1991.
[5]KENNEDY J, EBERHART R. Particle swarm optimization[A].Proceeding of IEEE International Conference on Neural Networks[C]. Piscataway, NJ,1995.
[6]SUN Chengyi, SUN Yan, LI Junwei. Mind evolution based machine learning: fr amework and the implementation [A]. Proceedings of the IEEE International Conf erence on Intelligent Engineering System[C].Vienna,Austria,1998.
[7]STORN R, PRICE K. Differential evolutiona simple and efficient adaptive s cheme for global optimization over continuous spaces[R].TR- 95- 012, ICSI, March, 1995.
[8]GIDAS B. Nonstationary Markov chains and convergence of the annealing algo rithm[J]. Journal of Statistical Physics, 1985, 39:73-131.
[9]RUDOLPH G. Convergence analysis of canonical genetic algorithms[J]. IEEE Tran sactions on Neural Networks,1994,5(1):96-101.
[10]MICHALEWICZ Z. Genetic algorithms+data structure=evolution programs[ M]. New York: SpringerVerlag, 1996.
[11]VAN DEN BERGH F. An analysis of particle swarm optimizers[D].Pretoria: University of Pretoria, 2002.
[12]AZIZI N, ZOLFAGHARI S. Adapative temperature control for simulated anneal ing: a comparative study[J]. Computers & Operations Research, 2004, 31:2439-24 51.
[13]TSALLIS C, STARIOLO D A. Generalized simulated annealing[J]. Physica A, 1996 , 233:395-406.
[14]YE Hong, LIN Zhiping. Speedup simulated annealing by parallel coordinate s[J].European Journal of Operational Research, 2006, 173:59-71.
[15]TSOULOS I G, LAGARIS I E. GenAnneal: genetically modified simulated annea ling[J]. Computer Physics Communication, 2006, 174: 846-851.
[16]WANG Ling, ZHANG Liang. Stochastic optimization using simulated annealing with hypothesis test[J]. Applied Mathematics and Computation, 2006, 174: 1329- 1342. 
[17]JI Mingjun, JIN Zhihong, TANG Huanwen. An improved simulated annealing fo r solving the linear constrained optimization problems[J]. Applied Mathematics and Computation, 2006,183(1): 251-259.
[18]CAVICCHIO D J. Adaptive search using simulated evolution[D].Michigan:Un i versity of Michigan, 1970.
[19]DE JONG K A. An analysis of the behavior of a class of genetic adaptive s ystem[D]. Michigan: University of Michigan, 1975.
[20]GOLDBERG D E, RICHARDSON J. Genetic algorithms with sharing for multimoda l function optimization [A]. Proceedings of the 2nd International Conference o n Genetic Algorithms[C]. Hillsdale, NJ: Lawrence Erlbaum,1987.
[21]GOLDBERG D E. Realcoded genetic algorithms, virtual alphabets and blocki ng[R].University of Illinois at UrbanaChampaign, Technical Report No. 90001 , 199 0.
[22]ARABAS J, MICHALEWICZ Z, MULAWLA J. GaVaPSa genetic algorithm with varyi ng population size[A]. Proceedings of the 1st IEEE International Conference on Evol utionary Computation[C].[s.l.], 1994.
[23]李茂军,童调生. 单亲遗传算法及其全局收敛性分析[J]. 自动化学报, 199 9, 25(1):69-73.
 LI Maojun, TONG Tiaosheng. A partheno-genetic algorithm and analysis on its glob al convergence[J]. Acta Automatica Sinca, 1999,25(1):69-73.
[24]骆晨钟,邵惠鹤. 采用混沌变异的进化算法[J]. 控制与决策, 2000, 15(5) :557-560.
 LUO Chenzhong, SHAO Huihe. Evolutionary algorithms with chaotic mutations[J]. Control and Decision, 2000, 15(5):557-560.
[25]巩敦卫,孙晓燕. 变搜索区域多种群遗传算法[J]. 控制理论与应用, 2006 , 23(2):256-260.
GONG Dunwei, SUN Xiaoyan. Multipopulation genetic algorithms with variational search areas[J]. Control Theory and Applications,2006,23(2):256-260.
[26]HAN K H, KIM J H. Genetic quantum algorithm and its application to combinatorial optimization problems[A].Proceedings of the IEEE Conference on Evolu tionary Computation, Piscataway[C].2000.
[27】PAN Feng, CHEN Jie, CAI Tao, et al. Stability, convergence of ballo on particle swarm optimizer and its application[A]. Proceedings of the 16th IF AC Congress[C]. Prague, Czech, 2005.
[28]RIGET J, VESTERSTROEM J S. A diversityguided particle swarm optim izerthe ARPSO[R].No. 2002-02, Department of Computer Scien ce, U niversity of Aarhus, EVALife,2002.
[29]ANGELINE P J. Using selection to improve particle swarm optimizatio n[A]. Proceedings of IEEE Conference on Evolutionary Computation[C]. Anchorage, USA,1998.
[30]BERGH F V D, ENGELBRECHT A P. A cooperative approach to particle sw arm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3) :225-239.
[31]RATNAWEERA A, HALGAMUGE S K, WATSON H C. Selforganizing hierarchi cal particle swarm optimizer with timevarying acceleration coefficients[J].I EEE Transactions on Evolutionary Computation, 2004, 8(3):240-255.
[32]TASOULIS D K, PAVLIDIS N G, PLAGIANAKOS V P, et al. Parallel differ ential evolution[A]. Proceedings of the CEC04 Congress on Evolutionary Computa tion[C].Portland, USA,2004.
[33]PAVLIDIS N G, PLAGIANNAKOS V P, TASOULIS D K, et al. Human designed Vs. genetically programmed differential evolution operators[A].Proceedings o f the IEEE Congress on Evolutionary Computation[C].Vancouver,Canada, 2006.
[34]王凌. 智能优化算法及其应用[M]. 北京:清华大学出版社,施普林格出版社, 2000
[35]吴晓军,薛惠锋,李  慜等 .GAPSO混合规划算法[J].西北大学学报(自然科学版),2005,35(1):39-42.
 WU Xiaojun, XUE Huifeng, LI Min,et al. A new programming of mixed genetic algori thm with particle swarm optimization[J]. Journal of Northwest University (Natu ral Science Edition), 2005, 35(1):39-42.
[36]王丽芳,曾建潮.基于微粒群算法与模拟退火算法的协同进化方法[J].自动化学报,2006,32(4):630-634.
 WANG Lifang, ZENG Jianchao. A cooperative evolutionary algorithm based on partic le swarm optimization and simulated annealing algorithm[J]. Acta Automatica Si nica, 2006, 32(4):630-634.
[37]JIAO Licheng, WANG Lei. A novel genetic algorithm based on immunity [J]. IEEE Transactions on System.Man and CyberneticsPart A: Systems and Hum ans, 2000, 30(5): 552-561.
[38]MEHRABIAN A R, LUCAS C. A novel numerical optimization algorithm in spired from weed colonization[J]. Ecological Informatics, 2006, 1(4):355-366.
[39]EROL O K, EKSIN I. A new optimization method: big bangbig crunch [J]. Advances in Engineering Software, 2006, 37: 106-111.
[40]SOLIS F J, WETS R J B. Minimization by random search techniques[J ]. Mathematics of Operations Research, 1981, 6(1): 19-30.
[41]李 兵,蒋蔚孙. 混沌优化方法及其应用[J]. 控制理论与应用, 1997, 14( 4):613-615.
 LI Bing, JIANG Weisun. Chaos optimization method and its application[J].Cont rol Theory & Applications,1997, 14(4):613-615
[42]JI Mingjun, TANG Huanwen. Application of chaos in simulated ann ealing[J]. Chaos, Solitons & Fractals, 2004, 21:933-941.
[43]袁晓辉, 袁艳斌,王 乘,等. 一种新型的自适应混沌遗传算法[J]. 电子学报, 200 6,34(4):708-712.
 YUAN Xiaohui, YUAN Yanbin, WANG Cheng, et al. A novel selfadaptive chaotic genetic algorithm[J]. Acta Electronica Sinica,2006, 34 (4): 708-712.
[44]杨俊杰, 周建中, 喻 菁,等. 基于混沌搜索的粒子群优化算法[J].计算机工程与应用, 2005,16: 69-71.
YANG Junjie, ZHOU Jianzhong, YU Jing, et al. Particle swarm optimization alg orithm based on chaos searching[J]. Computer Engineering and Applications, 200 5, 16 : 69-71.
[45]SCHMIDT H, THIERAUF G. A combined heuristic optimization tech nique[J]. Advances in Engineering Software, 2005, 36:11-19.
[46】CHIOU Jpi, CHANG Cf, SU Ct. Ant Direction hyb rid differential evolution for solving large capacitor placement problems[J]. IEEE Transactions on Power System, 2004, 19(4):1794-1800.
[47]ZHANG Wenjun, XIE Xiaofeng. DEPSO: hybrid particle swarm with d ifferential evolution operator[A]. Proceedings of the IEEE International Confe rence on Systems[C]. Washington,USA,2003.
[48]NARAYANAN A, MOORE M. Quantuminspired genetic algorithm[A]. Pro ceedings of the IEEE International Conference on Evolutionary Computation[C]. Piscataway,1996.
[49]YANG Shuyuan, WANG Min, JIAO Licheng. A quantum particle swarm optimization[A].Proceedings of CEC2004 Congress on Evolutionary Computation [C]. Portland, USA,2004.
[50]KVASNICKA V, POSPICHAL J. A hybrid simplex method and simulated ann ealing[J]. Chemometrics and Intelligent Laboratory System, 1997, 39:161-173.
[51】LIM A, RODRIGUES B, ZHANG X. A simulated annealing and hillclimbi ng algorithm for the traveling tournament problem[J]. European Journal of Oper ation al Research, 2006, 174:1459-1478.
[52]PENG Yehui. A hybrid algorithm combining pattern search method and genetic algorithm for bound constrained optimization[J]. Mathematical Theory and A pplications, 2005, 25(4):1-4
.【53XU Xiaoyan, DONY R D. Differential evolution with Powell′s d ire ction set method in medical image regeistration[A]. Proceedings of the IEEE In ternational Symposium on Biomedical Imaging: Macro to Nano[C].Arlington, USA ,200 4.
[54]SALHI S, QUEEN N M. A hybrid algorithm for identifying global and l ocal minima when optimizing functions with many minima[J]. European Journal of Operational Research, 2004, 155:51-67.
[55]CLERK M, KENNEDY J. The particle swarm: explosion, stability and co nvergence in a multidimensional complex space[J]. IEEE Transactions on Evolu tiona ry Computation, 2002, 6(1):58-73.

备注/Memo

备注/Memo:
收稿日期:2006-10-13.
基金项目:
国家自然科学基金资助项目(60374069);
高等学校优秀青年教师科研奖励计划(20010248)
作者简介:
陈 杰,男,1965年生,教授,博士生导师,中国人工智能学会常务理事,中国自动化学会常务理事兼副秘书长,主要研究方向为复杂系统多目标优化与决策、智能控制、约束系统非线性控制、优化方法. 获部级科技进步奖10项,完成科研项目20余项,发表学术论文70余篇,出版著作3部.
 E-mail: chenjie@bit.edu.cn.
辛  斌,男,1982年生,博士研究生,主要研究方向为计算智能、优化方法、模式识别等.
窦丽华,女,1961年生,教授,博士生导师,中国人工智能学会智能网络分会委员,主要研究方向为模式识别与智能系统.承担国家重点型号装备项目、重点预研项目和基金项目4项,获国防科工委科技进步4项,近几年在核心期刊上发表论文20余篇.
更新日期/Last Update: 2009-05-06