[1]杨文元.多标记学习自编码网络无监督维数约简[J].智能系统学报,2018,13(5):808-817.[doi:10.11992/tis.201804051]
 YANG Wenyuan.Unsupervised dimensionality reduction of multi-label learning via autoencoder networks[J].CAAI Transactions on Intelligent Systems,2018,13(5):808-817.[doi:10.11992/tis.201804051]
点击复制

多标记学习自编码网络无监督维数约简

参考文献/References:
[1] ZHANG Minling, ZHOU Zhihua. A review on multi-Label learning algorithms[J]. IEEE transactions on knowledge and data engineering, 2014, 26(8):1819-1837.
[2] TSOUMAKAS G, KATAKIS I. Multi-label classification:an overview[J]. International journal of data warehousing and mining, 2007, 3(3):1-13.
[3] WU Fei, WANG Zhuhao, ZHANG Zhongfei, et al. Weakly semi-supervised deep learning for multi-label image annotation[J]. IEEE transactions on big data, 2015, 1(3):109-122.
[4] LI Feng, MIAO Duoqian, PEDRYCZ W. Granular multi-label feature selection based on mutual information[J]. Pattern recognition, 2017, 67:410-423.
[5] ZHANG Yin, ZHOU Zhihua. Multilabel dimensionality reduction via dependence maximization[J]. ACM transactions on knowledge discovery from data, 2010, 4(3):1-21.
[6] 郭雨萌, 李国正. 一种多标记数据的过滤式特征选择框架[J]. 智能系统学报, 2014, 9(3):292-297 GUO Yumeng, LI Guozheng. A filtering framework fro the multi-label feature selection[J]. CAAI transactions on intelligent systems, 2014, 9(3):292-297
[7] JINDAL P, KUMAR D. A review on dimensionality reduction techniques[J]. International journal of computer applications, 2017, 173(2):42-46.
[8] OMPRAKASH S, SUMIT S. A review on dimension reduction techniques in data mining[J]. Computer engineering and intelligent systems, 2018, 9(1):7-14.
[9] YU Tingzhao, ZHANG Wensheng. Semisupervised multilabel learning with joint dimensionality reduction[J]. IEEE signal processing letters, 2016, 23(6):795-799.
[10] YU Yanming, WANG Jun, TAN Qiaoyu, et al. Semi-supervised multi-label dimensionality reduction based on dependence maximization[J]. IEEE access, 2017, 5:21927-21940.
[11] ZHANG Minling, ZHANG Kun. Multi-label learning by exploiting label dependency[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, DC, USA, 2010:999-1008.
[12] ZHANG Minling, ZHOU Zhihua. ML-KNN:a lazy learning approach to multi-label learning[J]. Pattern recognition, 2007, 40(7):2038-2048.
[13] BALDI P. Autoencoders, unsupervised learning and deep architectures[C]//Proceedings of the 2011 International Conference on Unsupervised and Transfer Learning Workshop. Washington, USA, 2011:37-50.
[14] BOURLARD H, KAMP Y. Auto-association by multilayer perceptrons and singular value decomposition[J]. Biological cybernetics, 1988, 59(4/5):291-294.
[15] 刘帅师, 程曦, 郭文燕, 等. 深度学习方法研究新进展[J]. 智能系统学报, 2016, 11(5):567-577 LIU Shuaishi, CHENG Xi, GUO Wenyan, et al. Progress report on new research in deep learning[J]. CAAI transactions on intelligent systems, 2016, 11(5):567-577
[16] VINCENT P, LAROCHELLE H, LAJOIE I, et al. Stacked denoising autoencoders:learning useful representations in a deep network with a local denoising criterion[J]. Journal of machine learning research, 2010, 11(12):3371-3408.
[17] YU Ying, WANG Yinglong. Feature selection for multi-label learning using mutual information and GA[M]//MIAO D, PEDRYCZ W, SLEZAK D, et al. Rough Sets and Knowledge Technology. Cham:Springer, 2014:454-463.
[18] 余鹰. 多标记学习研究综述[J]. 计算机工程与应用, 2015, 51(17):20-27 YU Ying. Survey on multi-label learning[J]. Computer engineering and applications, 2015, 51(17):20-27
[19] 段洁, 胡清华, 张灵均, 等. 基于邻域粗糙集的多标记分类特征选择算法[J]. 计算机研究与发展, 2015, 52(1):56-65 DUAN Jie, HU Qinghua, ZHANG Lingjun, et al. Feature selection for multi-label classification based on neighborhood rough sets[J]. Journal of computer research and development, 2015, 52(1):56-65
[20] DOQUIRE G, VERLEYSEN M. Feature selection for multi-label classification problems[C]//Proceedings of the 11th International Conference on Artificial Neural NetWorks Conference on Advances in Computational Intelligence. Torremolinos-Mÿlaga, Spain, 2011:9-16.
[21] LAMDA. Data & Code[EB/OL]. Nanjing:LAMDA, 2016[2018.03.20]. http://lamda.nju.edu.cn/Data.ashx.
[22] WOLD S, ESBENSEN K, GELADI P. Principal component analysis[J]. Chemometrics and intelligent laboratory systems, 1987, 2(1):27-52.
[23] HE Xiaofei. Locality preserving projections[M]. IL, USA:University of Chicago, 2005:186-197.
[24] BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural computation, 2003, 15(6):1373-1396.
[25] SCHAPIRE R E, SINGER Y. Boos texter:a boosting-based systemfor text categorization[J]. Machine learning-special issue on information retrieval, 2000, 39(2/3):135-168.
[26] TSOUMAKAS G, VLAHAVAS I. Random k-labelsets:an ensemble method for multilabel classification[M]//KOK J N, KORONACKI J, MANTARAS R L, et al. Machine Learning:ECML 2007. Berlin Heidelberg:Springer, 2007:406-417.
相似文献/References:
[1]徐 蓉,姜 峰,姚鸿勋.流形学习概述[J].智能系统学报,2006,1(1):44.
 XU Rong,JIANG Feng,YAO Hong-xun.Overview of manifold learning[J].CAAI Transactions on Intelligent Systems,2006,1(5):44.
[2]刘杨磊,梁吉业,高嘉伟,等.基于Tri-training的半监督多标记学习算法[J].智能系统学报,2013,8(5):439.[doi:10.3969/j.issn.1673-4785.201305033]
 LIU Yanglei,LIANG Jiye,GAO Jiawei,et al.Semi-supervised multi-label learning algorithm based on Tri-training[J].CAAI Transactions on Intelligent Systems,2013,8(5):439.[doi:10.3969/j.issn.1673-4785.201305033]
[3]余鹰,王乐为,吴新念,等.基于改进卷积神经网络的多标记分类算法[J].智能系统学报,2019,14(3):566.[doi:10.11992/tis.201804056]
 YU Ying,WANG Lewei,WU Xinnian,et al.A multi-label classification algorithm based on an improved convolutional neural network[J].CAAI Transactions on Intelligent Systems,2019,14(5):566.[doi:10.11992/tis.201804056]
[4]王一宾,裴根生,程玉胜.弹性网络核极限学习机的多标记学习算法[J].智能系统学报,2019,14(4):831.[doi:10.11992/tis.201806005]
 WANG Yibin,PEI Gensheng,CHENG Yusheng.Multi-label learning algorithm of an elastic net kernel extreme learning machine[J].CAAI Transactions on Intelligent Systems,2019,14(5):831.[doi:10.11992/tis.201806005]
[5]黄琴,钱文彬,王映龙,等.代价敏感数据的多标记特征选择算法[J].智能系统学报,2019,14(5):929.[doi:10.11992/tis.201807027]
 HUANG Qin,QIAN Wenbin,WANG Yinglong,et al.Multi-label feature selection algorithm for cost-sensitive data[J].CAAI Transactions on Intelligent Systems,2019,14(5):929.[doi:10.11992/tis.201807027]
[6]朱换荣,郑智超,孙怀江.面向局部线性回归分类器的判别分析方法[J].智能系统学报,2019,14(5):959.[doi:10.11992/tis.201808007]
 ZHU Huanrong,ZHENG Zhichao,SUN Huaijiang.Locality-regularized linear regression classification-based discriminant analysis[J].CAAI Transactions on Intelligent Systems,2019,14(5):959.[doi:10.11992/tis.201808007]

备注/Memo

收稿日期:2018-04-25。
基金项目:国家自然科学青年基金项目(61703196);福建省自然科学基金项目(2018J01549).
作者简介:杨文元,男,1967年生,副教授,博士,主要研究方向为机器学习、多标记学习、模式识别、计算机视觉。发表学术论文20余篇。
通讯作者:杨文元.Email:yangwy@mnnu.edu.cn.

更新日期/Last Update: 2018-10-25
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134