[1]朱换荣,郑智超,孙怀江.面向局部线性回归分类器的判别分析方法[J].智能系统学报,2019,14(5):959-965.[doi:10.11992/tis.201808007]
 ZHU Huanrong,ZHENG Zhichao,SUN Huaijiang.Locality-regularized linear regression classification-based discriminant analysis[J].CAAI Transactions on Intelligent Systems,2019,14(5):959-965.[doi:10.11992/tis.201808007]
点击复制

面向局部线性回归分类器的判别分析方法

参考文献/References:
[1] HARANDI M, SALZMANN M, HARTLEY R. Dimensionality reduction on SPD manifolds:the emergence of geometry-aware methods[J]. IEEE transactions on pattern analysis and machine intelligence, 2018, 40(1):48-62.
[2] CHOI S, SHIN J H, LEE J, et al. Experimental demonstration of feature extraction and dimensionality reduction using memristor networks[J]. Nano letters, 2017, 17(5):3113-3118.
[3] YIN Jun, WEI Lai, SONG Miao, et al. Optimized projection for collaborative representation based classification and its applications to face recognition[J]. Pattern recognition letters, 2016, 73:83-90.
[4] XIA Zhihua, WANG Xinhui, ZHANG Liangao, et al. A privacy-preserving and copy-deterrence content-based image retrieval scheme in cloud computing[J]. IEEE transactions on information forensics and security, 2016, 11(11):2594-2608.
[5] GONG Yunchao, LAZEBNIK S, GORDO A, et al. Iterative quantization:a procrustean approach to learning binary codes for large-scale image retrieval[J]. IEEE transactions on pattern analysis and machine intelligence, 2013, 35(12):2916-2929.
[6] YUAN Chengsheng, SUN Xingming, LV Rui. Fingerprint liveness detection based on multi-scale LPQ and PCA[J]. China communications, 2016, 13(7):60-65.
[7] DUBEY R K, GOH J, THING V L L. Fingerprint liveness detection from single image using low-level features and shape analysis[J]. IEEE transactions on information forensics and security, 2016, 11(7):1461-1475.
[8] YE Jieping, LI Tao, XIONG Tao, et al. Using uncorrelated discriminant analysis for tissue classification with gene expression data[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2004, 1(4):181-190.
[9] ZOU Quan, ZENG Jiancang, CAO Liujuan, et al. A novel features ranking metric with application to scalable visual and bioinformatics data classification[J]. Neurocomputing, 2016, 173:346-354.
[10] LI Tao, ZHU Shenghuo, OGIHARA M. Using discriminant analysis for multi-class classification:an experimental investigation[J]. Knowledge and information systems, 2006, 10(4):453-472.
[11] AMATRIAIN X, PUJOL J M. Data mining methods for recommender systems[M]//RICCI F, ROKACH L, SHAPIRA B. Recommender Systems Handbook. Boston, MA:Springer, 2015:227-262.
[12] RAUDYS S J, JAIN A K. Small sample size effects in statistical pattern recognition:recommendations for practitioners[J]. IEEE transactions on pattern analysis and machine intelligence, 1991, 13(3):252-264.
[13] TURK M, PENTLAND A. Eigenfaces for recognition[J]. Journal of cognitive neuroscience, 1991, 3(1):71-86.
[14] BELHUMEUR P N, HESPANHA J P, KRIEGMAN D J. Eigenfaces vs. Fisherfaces:recognition using class specific linear projection[J]. IEEE transactions on pattern analysis and machine intelligence, 1997, 19(7):711-720.
[15] HE Xiaofei, YAN Shuicheng, HU Yuxiao, et al. Face recognition using laplacianfaces[J]. IEEE transactions on pattern analysis and machine intelligence, 2005, 27(3):328-340.
[16] ZHANG Lei, YANG Meng, FENG Xiangchu. Sparse representation or collaborative representation:which helps face recognition?[C]//Proceedings of 2011 International Conference on Computer Vision. Barcelona, Spain, 2011:471-478.
[17] NASEEM I, TOGNERI R, BENNAMOUN M. Linear regression for face recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2010, 32(11):2106-2112.
[18] BROWN D, LI Hanxi, GAO Yongsheng. Locality-regularized linear regression for face recognition[C]//Proceedings of the 21st International Conference on Pattern Recognition. Tsukuba, Japan, 2012:1586-1589.
[19] HUANG Pu, LI Tao, SHU Zhenqiu, et al. Locality-regularized linear regression discriminant analysis for feature extraction[J]. Information sciences, 2018, 429:164-176.
[20] WANG Huan, YAN Shuisheng, XU Dong, et al. Trace ratio vs. Ratio trace for dimensionality reduction[C]//Proceedings of 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA, 2007:1-8.
[21] NGO T T, BELLALIJ M, SAAD Y. The trace ratio optimization problem[J]. SIAM review, 2012, 54(3):545-569.
[22] JIANG Wenhao, CHUNG Fulai. A trace ratio maximization approach to multiple kernel-based dimensionality reduction[J]. Neural networks, 2014, 49:96-106.
[23] WEN Zaiwen, YIN Wotao. A feasible method for optimization with orthogonality constraints[J]. Mathematical programming, 2013, 142(1/2):397-434.
[24] CHEN Yi, JIN Zhong. Reconstructive discriminant analysis:a feature extraction method induced from linear regression classification[J]. Neurocomputing, 2012, 87:41-50.
[25] COVER T, HART P. Nearest neighbor pattern classification[J]. IEEE transactions on information theory, 1967, 13(1):21-27.
[26] ZHANG Daoqiang, CHEN Songcan, ZHOU Zhihua. Learning the kernel parameters in kernel minimum distance classifier[J]. Pattern recognition, 2006, 39(1):133-135.
相似文献/References:
[1]徐 蓉,姜 峰,姚鸿勋.流形学习概述[J].智能系统学报,2006,1(1):44.
 XU Rong,JIANG Feng,YAO Hong-xun.Overview of manifold learning[J].CAAI Transactions on Intelligent Systems,2006,1():44.
[2]杨文元.多标记学习自编码网络无监督维数约简[J].智能系统学报,2018,13(5):808.[doi:10.11992/tis.201804051]
 YANG Wenyuan.Unsupervised dimensionality reduction of multi-label learning via autoencoder networks[J].CAAI Transactions on Intelligent Systems,2018,13():808.[doi:10.11992/tis.201804051]

备注/Memo

收稿日期:2018-08-09。
基金项目:国家自然科学基金项目(61772272).
作者简介:朱换荣,女,1994年生,硕士研究生,主要研究方向为机器学习、人脸识别;郑智超,男,1992年生,博士研究生,主要研究方向为人脸识别、子空间学习;孙怀江,男,1968年生,教授,博士生导师,主要研究方向为神经网络与机器学习、人体运动分析与合成、多媒体与虚拟现实、图像处理与计算机视觉。曾主持或参与完成国家级项目3项,省部级项目3项,获省部级科技进步二等奖1项。发表学术论文80余篇。
通讯作者:朱换荣.E-mail:zhuhuanrong@foxmail.com

更新日期/Last Update: 1900-01-01
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134