[1]朱换荣,郑智超,孙怀江.面向局部线性回归分类器的判别分析方法[J].智能系统学报,2019,14(05):959-965.[doi:10.11992/tis.201808007]
 ZHU Huanrong,ZHENG Zhichao,SUN Huaijiang.Locality-regularized linear regression classification-based discriminant analysis[J].CAAI Transactions on Intelligent Systems,2019,14(05):959-965.[doi:10.11992/tis.201808007]
点击复制

面向局部线性回归分类器的判别分析方法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第14卷
期数:
2019年05期
页码:
959-965
栏目:
出版日期:
2019-09-05

文章信息/Info

Title:
Locality-regularized linear regression classification-based discriminant analysis
作者:
朱换荣 郑智超 孙怀江
南京理工大学 计算机科学与工程学院, 江苏 南京 210094
Author(s):
ZHU Huanrong ZHENG Zhichao SUN Huaijiang
College of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing 210094, China
关键词:
局部线性回归分类器维数约简正交投影迹比问题人脸识别特征提取判别分析线性回归分类器
Keywords:
locality-regularized linear regression classificationdimensionality reductionorthogonal projectionstrace ratio problemface recognitionfeature extractiondiscriminant analysislinear regression classification
分类号:
TP391
DOI:
10.11992/tis.201808007
摘要:
局部线性回归分类器(locality-regularized linear regression classification,LLRC)在人脸识别上表现出了高识别率以及高效性的特点,然而原始特征空间并不能保证LLRC的效率。为了提高LLRC的性能,提出了一种与LLRC相联系的新的降维方法,即面向局部线性回归分类器的判别分析方法(locality-regularized linear regression classification based discriminant analysis,LLRC-DA)。LLRC-DA根据LLRC的决策准则设计目标函数,通过最大化类间局部重构误差并最小化类内局部重构误差来寻找最优的特征子空间。此外,LLRC-DA通过对投影矩阵添加正交约束来消除冗余信息。为了有效地求解投影矩阵,利用优化变量之间的关系,提出了一种新的迹比优化算法。因此LLRC-DA非常适用于LLRC。在FERET和ORL人脸库上进行了实验,实验结果表明LLRC-DA比现有方法更具有优越性。
Abstract:
Locality-regularized linear regression classification (LLRC) based face recognition achieves high accuracy and high efficiency. However, the original feature space cannot guarantee the efficiency of LLRC. To improve the performance of LLRC, this study proposes a new dimensionality reduction method called locality-regularized linear regression classification-based discriminant analysis (LLRC-DA), which is directly associated with LLRC. The objective function of LLRC-DA is designed according to the classification rule of LLRC. In LLRC, interclass local reconstruction errors are maximized and simultaneously, intraclass local reconstruction errors are minimized to identify the optimal feature subspace. In addition, LLRC-DA eliminates redundant information using an orthogonal constraint, imposed on the projection matrix. To effectively obtain the solutions of the projection matrix, we exploit the relationship between optimal variables and propose a new trace ratio optimization method. Hence, LLRC-DA suits LLRC well. Extensive experimental results obtained from the FERET and ORL face databases demonstrate the superiority of the proposed method than state-of-the-art methods.

参考文献/References:

[1] HARANDI M, SALZMANN M, HARTLEY R. Dimensionality reduction on SPD manifolds:the emergence of geometry-aware methods[J]. IEEE transactions on pattern analysis and machine intelligence, 2018, 40(1):48-62.
[2] CHOI S, SHIN J H, LEE J, et al. Experimental demonstration of feature extraction and dimensionality reduction using memristor networks[J]. Nano letters, 2017, 17(5):3113-3118.
[3] YIN Jun, WEI Lai, SONG Miao, et al. Optimized projection for collaborative representation based classification and its applications to face recognition[J]. Pattern recognition letters, 2016, 73:83-90.
[4] XIA Zhihua, WANG Xinhui, ZHANG Liangao, et al. A privacy-preserving and copy-deterrence content-based image retrieval scheme in cloud computing[J]. IEEE transactions on information forensics and security, 2016, 11(11):2594-2608.
[5] GONG Yunchao, LAZEBNIK S, GORDO A, et al. Iterative quantization:a procrustean approach to learning binary codes for large-scale image retrieval[J]. IEEE transactions on pattern analysis and machine intelligence, 2013, 35(12):2916-2929.
[6] YUAN Chengsheng, SUN Xingming, LV Rui. Fingerprint liveness detection based on multi-scale LPQ and PCA[J]. China communications, 2016, 13(7):60-65.
[7] DUBEY R K, GOH J, THING V L L. Fingerprint liveness detection from single image using low-level features and shape analysis[J]. IEEE transactions on information forensics and security, 2016, 11(7):1461-1475.
[8] YE Jieping, LI Tao, XIONG Tao, et al. Using uncorrelated discriminant analysis for tissue classification with gene expression data[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2004, 1(4):181-190.
[9] ZOU Quan, ZENG Jiancang, CAO Liujuan, et al. A novel features ranking metric with application to scalable visual and bioinformatics data classification[J]. Neurocomputing, 2016, 173:346-354.
[10] LI Tao, ZHU Shenghuo, OGIHARA M. Using discriminant analysis for multi-class classification:an experimental investigation[J]. Knowledge and information systems, 2006, 10(4):453-472.
[11] AMATRIAIN X, PUJOL J M. Data mining methods for recommender systems[M]//RICCI F, ROKACH L, SHAPIRA B. Recommender Systems Handbook. Boston, MA:Springer, 2015:227-262.
[12] RAUDYS S J, JAIN A K. Small sample size effects in statistical pattern recognition:recommendations for practitioners[J]. IEEE transactions on pattern analysis and machine intelligence, 1991, 13(3):252-264.
[13] TURK M, PENTLAND A. Eigenfaces for recognition[J]. Journal of cognitive neuroscience, 1991, 3(1):71-86.
[14] BELHUMEUR P N, HESPANHA J P, KRIEGMAN D J. Eigenfaces vs. Fisherfaces:recognition using class specific linear projection[J]. IEEE transactions on pattern analysis and machine intelligence, 1997, 19(7):711-720.
[15] HE Xiaofei, YAN Shuicheng, HU Yuxiao, et al. Face recognition using laplacianfaces[J]. IEEE transactions on pattern analysis and machine intelligence, 2005, 27(3):328-340.
[16] ZHANG Lei, YANG Meng, FENG Xiangchu. Sparse representation or collaborative representation:which helps face recognition?[C]//Proceedings of 2011 International Conference on Computer Vision. Barcelona, Spain, 2011:471-478.
[17] NASEEM I, TOGNERI R, BENNAMOUN M. Linear regression for face recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2010, 32(11):2106-2112.
[18] BROWN D, LI Hanxi, GAO Yongsheng. Locality-regularized linear regression for face recognition[C]//Proceedings of the 21st International Conference on Pattern Recognition. Tsukuba, Japan, 2012:1586-1589.
[19] HUANG Pu, LI Tao, SHU Zhenqiu, et al. Locality-regularized linear regression discriminant analysis for feature extraction[J]. Information sciences, 2018, 429:164-176.
[20] WANG Huan, YAN Shuisheng, XU Dong, et al. Trace ratio vs. Ratio trace for dimensionality reduction[C]//Proceedings of 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA, 2007:1-8.
[21] NGO T T, BELLALIJ M, SAAD Y. The trace ratio optimization problem[J]. SIAM review, 2012, 54(3):545-569.
[22] JIANG Wenhao, CHUNG Fulai. A trace ratio maximization approach to multiple kernel-based dimensionality reduction[J]. Neural networks, 2014, 49:96-106.
[23] WEN Zaiwen, YIN Wotao. A feasible method for optimization with orthogonality constraints[J]. Mathematical programming, 2013, 142(1/2):397-434.
[24] CHEN Yi, JIN Zhong. Reconstructive discriminant analysis:a feature extraction method induced from linear regression classification[J]. Neurocomputing, 2012, 87:41-50.
[25] COVER T, HART P. Nearest neighbor pattern classification[J]. IEEE transactions on information theory, 1967, 13(1):21-27.
[26] ZHANG Daoqiang, CHEN Songcan, ZHOU Zhihua. Learning the kernel parameters in kernel minimum distance classifier[J]. Pattern recognition, 2006, 39(1):133-135.

相似文献/References:

[1]徐 蓉,姜 峰,姚鸿勋.流形学习概述[J].智能系统学报,2006,1(01):44.
 XU Rong,JIANG Feng,YAO Hong-xun.Overview of manifold learning[J].CAAI Transactions on Intelligent Systems,2006,1(05):44.
[2]杨文元.多标记学习自编码网络无监督维数约简[J].智能系统学报,2018,13(05):808.[doi:10.11992/tis.201804051]
 YANG Wenyuan.Unsupervised dimensionality reduction of multi-label learning via autoencoder networks[J].CAAI Transactions on Intelligent Systems,2018,13(05):808.[doi:10.11992/tis.201804051]

备注/Memo

备注/Memo:
收稿日期:2018-08-09。
基金项目:国家自然科学基金项目(61772272).
作者简介:朱换荣,女,1994年生,硕士研究生,主要研究方向为机器学习、人脸识别;郑智超,男,1992年生,博士研究生,主要研究方向为人脸识别、子空间学习;孙怀江,男,1968年生,教授,博士生导师,主要研究方向为神经网络与机器学习、人体运动分析与合成、多媒体与虚拟现实、图像处理与计算机视觉。曾主持或参与完成国家级项目3项,省部级项目3项,获省部级科技进步二等奖1项。发表学术论文80余篇。
通讯作者:朱换荣.E-mail:zhuhuanrong@foxmail.com
更新日期/Last Update: 1900-01-01