[1]高琪,李德玉,王素格.基于模糊不一致对的多标记属性约简[J].智能系统学报,2020,15(2):374-385.[doi:10.11992/tis.201905046]
 GAO Qi,LI Deyu,WANG Suge.Multi-label attribute reduction based on fuzzy inconsistency pairs[J].CAAI Transactions on Intelligent Systems,2020,15(2):374-385.[doi:10.11992/tis.201905046]
点击复制

基于模糊不一致对的多标记属性约简

参考文献/References:
[1] 李华, 李德玉, 王素格, 等. 基于粗糙集的多标记专属特征学习算法[J]. 小型微型计算机系统, 2015, 36(23): 2730-2734
LI Hua, LI Deyu, WANG Suge, et al. Multi-label learning with label-specific features based on rough sets[J]. Journal of Chinese computer systems, 2015, 36(23): 2730-2734
[2] ZHANG Minling, ZHOU Zhihua. A review on multi-label learning algorithms[J]. IEEE transactions on knowledge and data engineering, 2014, 26(8): 1819-1837.
[3] HOTELLING H. Relations between two sets of variates[J]. Biometrika, 1936, 28(3/4): 321-377.
[4] SUN Liang, JI Shuiwang, YE Jieping, et al. Multi-label dimensionality reduction[M]. Florida: CRC Press, 2013: 20-22.
[5] YU Kai, YU Shipeng, TRESP V. Multi-label informed latent semantic indexing[C]//Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA, 2005: 258-265.
[6] ZHANG Lingjun, HU Qinghua, DUAN Jie, et al. Multi-label feature selection with fuzzy rough sets[C]//Proceedings of 9th International Conference on Rough Sets and Knowledge Technology. Shanghai, China, 2014: 121-128.
[7] LIN Yaojin, HU Qinghua, LIU Jinghua, et al. Multi-label feature selection based on neighborhood mutual information[J]. Applied soft computing, 2016, 38: 244-256.
[8] LI Ling, LIU Huawen, MA Zongjie, et al. Multi-label feature selection via information gain[C]//Proceedings of the 10th International Conference on Advanced Data Mining and Applications. Guilin, China, 2014: 345-355.
[9] LI Yuwen, LIN Yaojin, LIU Jinghua, et al. Feature selection for multi-label learning based on kernelized fuzzy rough sets[J]. Neurocomputing, 2018, 318: 271-286.
[10] 李京政, 杨习贝, 王平心, 等. 模糊粗糙集的稳定约简方法[J]. 南京理工大学学报, 2018, 42(1): 68-75
LI Jingzheng, YANG Xibei, WANG Pingxin, et al. Stable attribute reduction approach for fuzzy rough set[J]. Journal of Nanjing University of Science and Technology, 2018, 42(1): 68-75
[11] SPOOLA?R N, CHERMAN E A, MONARD M C, et al. Filter approach feature selection methods to support multi-label learning based on ReliefF and information gain[C]//Proceedings of 21th Brazilian Symposium on Artificial Intelligence on Advances in Artificial Intelligence. Curitiba, Brazil, 2012: 72-81.
[12] ESCALERA S, RADEVA P, PUJOL O. Complex salient regions for computer vision problems[C]//Proceedings of 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA, 2007: 18-23.
[13] JENSEN R, SHEN Qiang. New approaches to fuzzy-rough feature selection[J]. IEEE transactions on fuzzy systems, 2009, 17(4): 824-838.
[14] JENSEN R, SHEN Qiang. Fuzzy-rough sets assisted attribute selection[J]. IEEE transactions on fuzzy systems, 2007, 15(1): 73-89.
[15] CHEN Degang, ZHANG L, ZHAO Suyun, et al. A novel algorithm for finding reducts with fuzzy rough sets[J]. IEEE transactions on fuzzy systems, 2012, 20(2): 385-389.
[16] DAI Jianhua, HU Hu, WU Weizhi, et al. Maximal-discernibility-pair-based approach to attribute reduction in fuzzy rough sets[J]. IEEE transactions on fuzzy systems, 2018, 26(4): 2174-2187.
[17] 郭荣超, 李德玉, 王素格. 基于标记关系的模糊粗糙集模型[J]. 模式识别与人工智能, 2017, 30(10): 952-960
GUO Rongchao, LI Deyu, WANG Suge. Fuzzy rough set model based on label relations[J]. Pattern recognition and artificial intelligence, 2017, 30(10): 952-960
[18] 李晓艳, 张子刚, 张逸石, 等. 一种基于KL散度和类分离策略的特征选择算法[J]. 计算机科学, 2012, 39(12): 224-227
LI Xiaoyan, ZHANG Zigang, ZHANG Yishi, et al. KL-divergence based feature selection algorithm with the separate-class strategy[J]. Computer science, 2012, 39(12): 224-227
[19] LIN Yaojin, LI Yuwen, WANG Chenxi, et al. Attribute reduction for multi-label learning with fuzzy rough set[J]. Knowledge-based systems, 2018, 152: 54-61.
[20] 林梦雷, 刘景华, 王晨曦, 等. 基于标记权重的多标记特征选择算法[J]. 计算机科学, 2017, 44(10): 289-295, 317
LIN Menglei, LIU Jinghua, WANG Chenxi, et al. Multi-label feature selection algorithm based on label weighting[J]. Computer science, 2017, 44(10): 289-295, 317
[21] SPOLA?R N, CHERMAN E A, MONARD M C, et al. ReliefF for multi-label feature selection[C]//Proceedings of 2013 Brazilian Conference on Intelligent Systems. Fortaleza, Brazil, 2013: 6-11.
[22] ZHANG Minling, ZHOU Zhihua. ML-KNN: a lazy learning approach to multi-label learning[J]. Pattern recognition, 2007, 40(7): 2038-2048.
相似文献/References:
[1]伞 冶,叶玉玲.粗糙集理论及其在智能系统中的应用[J].智能系统学报,2007,2(2):40.
 SAN Ye,YE Yu-ling.Rough set theory and its application in the intelligent systems[J].CAAI Transactions on Intelligent Systems,2007,2(2):40.
[2]马胜蓝,叶东毅.一种带禁忌搜索的粒子并行子群最小约简算法[J].智能系统学报,2011,6(2):132.
 MA Shenglan,YE Dongyi.A minimum reduction algorithm based on parallel particle subswarm optimization with tabu search capability[J].CAAI Transactions on Intelligent Systems,2011,6(2):132.
[3]杨成东,邓廷权.综合属性选择和删除的属性约简方法[J].智能系统学报,2013,8(2):183.[doi:10.3969/j.issn.1673-4785.201209056]
 YANG Chengdong,DENG Tingquan.An approach to attribute reduction combining attribute selection and deletion[J].CAAI Transactions on Intelligent Systems,2013,8(2):183.[doi:10.3969/j.issn.1673-4785.201209056]
[4]乔丽娟,徐章艳,谢小军,等.基于知识粒度的不完备决策表的属性约简算法[J].智能系统学报,2016,11(1):129.[doi:10.11992/tis.201506029]
 QIAO Lijuan,XU Zhangyan,XIE Xiaojun,et al.Efficient attribute reduction algorithm for an incomplete decision table based on knowledge granulation[J].CAAI Transactions on Intelligent Systems,2016,11(2):129.[doi:10.11992/tis.201506029]
[5]鞠恒荣,马兴斌,杨习贝,等.不完备信息系统中测试代价敏感的可变精度分类粗糙集[J].智能系统学报,2014,9(2):219.[doi:10.3969/j.issn.1673-4785.201307010]
 JU Hengrong,MA Xingbin,YANG Xibei,et al.Test-cost-sensitive based variable precision classification rough set in incomplete information system[J].CAAI Transactions on Intelligent Systems,2014,9(2):219.[doi:10.3969/j.issn.1673-4785.201307010]
[6]韦碧鹏,吕跃进,李金海.α优势关系下粗糙集模型的属性约简[J].智能系统学报,2014,9(2):251.[doi:10.3969/j.issn.1673-4785.201307012]
 WEI Bipeng,LÜ,Yuejin,et al.Attribute reduction based on the rough set model under α dominance relation[J].CAAI Transactions on Intelligent Systems,2014,9(2):251.[doi:10.3969/j.issn.1673-4785.201307012]
[7]钱进,朱亚炎.面向成组对象集的增量式属性约简算法[J].智能系统学报,2016,11(4):496.[doi:10.11992/tis.201606005]
 QIAN Jin,ZHU Yayan.An incremental attribute reduction algorithm for group objects[J].CAAI Transactions on Intelligent Systems,2016,11(2):496.[doi:10.11992/tis.201606005]
[8]冯丹,黄洋,石云鹏,等.连续型数据的辨识矩阵属性约简方法[J].智能系统学报,2017,12(3):371.[doi:10.11992/tis.201704032]
 FENG Dan,HUANG Yang,SHI Yunpeng,et al.A discernibility matrix-based attribute reduction for continuous data[J].CAAI Transactions on Intelligent Systems,2017,12(2):371.[doi:10.11992/tis.201704032]
[9]高学义,张楠,童向荣,等.广义分布保持属性约简研究[J].智能系统学报,2017,12(3):377.[doi:10.11992/tis.201704025]
 GAO Xueyi,ZHANG Nan,TONG Xiangrong,et al.Research on attribute reduction using generalized distribution preservation[J].CAAI Transactions on Intelligent Systems,2017,12(2):377.[doi:10.11992/tis.201704025]
[10]李京政,杨习贝,窦慧莉,等.重要度集成的属性约简方法研究[J].智能系统学报,2018,13(3):414.[doi:10.11992/tis.201706080]
 LI Jingzheng,YANG Xibei,DOU Huili,et al.Research on ensemble significance based attribute reduction approach[J].CAAI Transactions on Intelligent Systems,2018,13(2):414.[doi:10.11992/tis.201706080]

备注/Memo

收稿日期:2019-05-24。
基金项目:国家自然科学基金项目(61672331, 61573231, 61432011, 61802237);山西省重点研发计划项目 (201803D421024, 201903D421041);山西省高等学校优秀成果培育项目(2019SK036);山西省高等学校青年科研人员培育计划
作者简介:高琪,硕士研究生,主要研究方向为粗糙集、多标记学习;李德玉,教授,博士,主要研究方向为粒计算、机器学习,多标记学习。主持国家自然科学基金项目2项,参加过3项国家863计划项目等。出版著作2部,发表学术论文80余篇;王素格,教授,博士,主要研究方向为自然语言处理、文本挖掘。主持国家自然科学基金项2项,山西省自然科学基金1项。发表学术论文80余篇
通讯作者:李德玉.E-mail:lidy@sxu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134