[1]程洪,黄瑞,邱静,等.人机智能技术及系统研究进展综述[J].智能系统学报,2020,15(2):386-398.[doi:10.11992/tis.201912001]
 CHENG Hong,HUANG Rui,QIU Jing,et al.A survey of recent advances in human-robot intelligent systems[J].CAAI Transactions on Intelligent Systems,2020,15(2):386-398.[doi:10.11992/tis.201912001]
点击复制

人机智能技术及系统研究进展综述(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第15卷
期数:
2020年2期
页码:
386-398
栏目:
人工智能院长论坛
出版日期:
2020-07-09

文章信息/Info

Title:
A survey of recent advances in human-robot intelligent systems
作者:
程洪1 黄瑞1 邱静1 马文昊1 施柯丞1 李骏2
1. 电子科技大学 机器人研究中心, 四川 成都 611731;
2. 清华大学 车辆与运载学院, 北京 100084
Author(s):
CHENG Hong1 HUANG Rui1 QIU Jing1 MA Wenhao1 SHI Kecheng1 LI Jun2
1. Robotics Research Center, University of Electronic Science and Technology of China, Chengdu 611731, China;
2. School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
关键词:
人机智能系统系统建模人机交互协同控制混合智能康复机器人人机共驾社会机器人
Keywords:
human-robot intelligent systemsystem modelinghuman-robot interactioncollaborationhybrid intelligencerehabilitation robotcooperative drivingsocial robot
分类号:
TP24
DOI:
10.11992/tis.201912001
摘要:
人机智能系统是能够实现人机智能协作的机器人系统,近年来成为了机器人领域的研究热点,具有广泛的应用前景。针对人机智能系统技术和应用的国内外研究现状,从人机智能系统的关键技术和典型应用领域两方面进行了进展综述。重点综述了与传统机器人系统存在差异性的人机智能系统关键技术,从建模、交互、协同和优化4个方面的研究进展分别展开论述,对涉及的典型应用领域及典型人机智能系统进行总结,并对人机智能系统发展的挑战和未来研究方向进行了展望。
Abstract:
Human-robot intelligent system is a kind of robotic system which has the ability to cooperative with operators. The human-robot intelligent system has been a popular topic in robotics thanks to its potential applications. According to the research status of human-robot intelligent systems, fundamental technologies and typical application domains of human-robot intelligent systems are summarized. In particular, this survey focus on the difference of fundamental technologies between traditional robotic systems and human-robot intelligent systems. The research progress in modeling, interaction, collaboration and optimization is discussed respectively. Typical human-robot intelligent systems in different applications are summarized, in which challenges and potential future development of human-robot intelligent systems are discussed.

参考文献/References:

[1] AMOR H B, NEUMANN G, KAMTHE S, et al. Interaction primitives for human-robot cooperation tasks[C]//Proceedings of 2014 IEEE International Conference on Robotics and Automation. Hong Kong, China, 2014: 2831-2837.
[2] SASAKI K, EGUCHI Y, SUZUKI K. Step-climbing wheelchair with lever propelled rotary legs[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany, 2015: 6354-6359.
[3] SU Hang, YANG Chenguang, FERRIGNO G, et al. Improved human-robot collaborative control of redundant robot for teleoperated minimally invasive surgery[J]. IEEE robotics and automation letters, 2019, 4(2): 1447-1453.
[4] ROZO L, BRUNO D, CALINON S, et al. Learning optimal controllers in human-robot cooperative transportation tasks with position and force constraints[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany, 2015: 1024-1030.
[5] HUANG Rui, CHENG Hong, GUO Hongliang, et al. Learning cooperative primitives with physical human-robot interaction for a human-powered lower exoskeleton[C]//Proceedings of 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems. Daejeon, South Korea, 2016: 5355-5360.
[6] BENDERIUS O, BERGER C, LUNDGREN V M. The best rated human-machine interface design for autonomous vehicles in the 2016 grand cooperative driving challenge[J]. IEEE transactions on intelligent transportation systems, 2018, 19(4): 1302-1307.
[7] STRICKLAND M, FAINEKOS G, AMOR H B. Deep predictive models for collision risk assessment in autonomous driving[C]//Proceedings of 2018 IEEE International Conference on Robotics and Automation. Brisbane, Australia, 2018: 4685-4692.
[8] 雷永林, 朱一凡, 谭跃进, 等. 模型驱动的复杂人机系统过程建模仿真方法[J]. 系统工程与电子技术, 2016, 38(1): 223-231
LEI Yonglin, ZHU Yifan, TAN Yuejin, et al. Model driven process modeling and simulation of complex man-machine systems[J]. Systems engineering and electronics, 2016, 38(1): 223-231
[9] TRAN H T, CHENG Hong, LIN Xichuan, et al. The relationship between physical human- exoskeleton interaction and dynamic factors: using a learning approach for control applications[J]. Science China information sciences, 2014, 57(12): 1-13.
[10] HADDADIN S, CROFT E. Physical human-robot interaction[M]//SICILIANO B, KHATIB O. Springer Handbook of Robotics. Cham: Springer, 2016.
[11] SHIROTA C, TUCKER M R, LAMBERCY O, et al. Kinematic effects of inertia and friction added by a robotic knee exoskeleton after prolonged walking[C]//Proceedings of 2017 International Conference on Rehabilitation Robotics. London, UK, 2017: 430-434.
[12] MALLAT R, VINCENT B, HUO Weiguang, et al. Human-exoskeleton system dynamics identification using affordable sensors[C]//Proceedings of 2018 IEEE International Conference on Robotics and Automation. Brisbane, Australia, 2018: 6759-6765.
[13] GHAN J, KAZEROONI H. System identification for the Berkeley Lower Extremity Exoskeleton (BLEEX)[C]//Proceedings of 2006 IEEE International Conference on Robotics and Automation. Orlando, USA, 2006: 3477-3484.
[14] GHAN J, STEGER R, KAZEROONI H. Control and system identification for the Berkeley Lower Extremity Exoskeleton (BLEEX)[J]. Advanced robotics, 2006, 20(9): 989-1014.
[15] TRAN H J, CHENG Hong, DUONG M K, et al. Fuzzy-based impedance regulation for control of the coupled human-exoskeleton system[C]//Proceedings of 2014 IEEE International Conference on Robotics and Biomimetics. Bali, Indonesia, 2014: 986-992.
[16] DUONG M K, CHENG Hong, TRAN H T, et al. Minimizing human-exoskeleton interaction force using compensation for dynamic uncertainty error with adaptive RBF network[J]. Journal of intelligent & robotic systems, 2016, 82(3-4): 413-433.
[17] TRAN H T, CHENG Hong, RUI Huang, et al. Evaluation of a fuzzy-based impedance control strategy on a powered lower exoskeleton[J]. International journal of social robotics, 2016, 8(1): 103-123.
[18] 王启宁, 郑恩昊, 陈保君, 等. 面向人机融合的智能动力下肢假肢研究现状与挑战[J]. 自动化学报, 2016, 42(12): 1780-1793
WANG Qining, ZHENG Enhao, CHEN Baojun, et al. Recent progress and challenges of robotic lower-limb prostheses for human-robot integration[J]. Acta automatica sinica, 2016, 42(12): 1780-1793
[19] EILENBERG M F, GEYER H, HERR H. Control of a powered ankle-foot prosthesis based on a neuromuscular model[J]. IEEE transactions on neural systems and rehabilitation engineering, 2010, 18(2): 164-173.
[20] WEN Yue, SI J, GAO Xiang, et al. A new powered lower limb prosthesis control framework based on adaptive dynamic programming[J]. IEEE transactions on neural networks and learning systems, 2017, 28(9): 2215-2220.
[21] 俞凯, 陈露, 陈博, 等. 任务型人机对话系统中的认知技术 - 概念、进展及其未来[J]. 计算机学报, 2015, 38(12): 2333-2348
YU Kai, CHEN Lu, CHEN Bo, et al. Cognitive technology in task-oriented dialogue systems: concepts, advances and future[J]. Chinese journal of computers, 2015, 38(12): 2333-2348
[22] WU Huiyue, WANG Yu, QIU Jiali, et al. User-defined gesture interaction for immersive VR shopping applications[J]. Behaviour & information technology, 2018, 38(7): 726-741.
[23] CASTRO-VARGAS J A, ZAPATA-IMPATA B, GIL P, et al. 3DCNN performance in hand gesture recognition applied to robot arm interaction[C]//Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods. Prague, Czech Republic, 2019: 802-806.
[24] KAWAMOTO H, LEE S, KANBE S, et al. Power assist method for HAL-3 using EMG-based feedback controller[C]//Proceedings of 2003 IEEE International Conference on Systems, Man and Cybernetics. Washington, USA, 2003: 1648-1653.
[25] LEE S, SANKAI Y. Power assist control for walking aid with HAL-3 based on EMG and impedance adjustment around knee joint[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Lausanne, Switzerland, 2002: 1499-1504.
[26] HAMAYA M, MATSUBARA T, NODA T, et al. Learning assistive strategies for exoskeleton robots from user-robot physical interaction[J]. Pattern recognition letters, 2017, 99: 67-76.
[27] WANG Can, WU Xinyu, WANG Zhouyang, et al. Implementation of a brain-computer interface on a lower-limb exoskeleton[J]. IEEE access, 2018, 6: 38524-38534.
[28] MA Xunju, LONG Xingguo, YAN Zefeng, et al. Real-time active control of a lower limb exoskeleton based on sEMG[C]//Proceedings of 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Hong Kong, China, 2019: 589-594.
[29] 张毅, 代凌凌, 罗元. 基于SEMG控制的智能轮椅无障碍人机交互系统[J]. 华中科技大学学报(自然科学版), 2011, 39(S2): 264-267, 282
ZHANG Yi, DAI Lingling, LUO Yuan. Information accessibility human-machine interaction system of intelligent wheelchair based on SEMG[J]. Journal of Huazhong University of Science and Technology (nature science edition), 2011, 39(S2): 264-267, 282
[30] CIPRIANI C, ZACCONE F, MICERA S, et al. On the shared control of an EMG-controlled prosthetic hand: analysis of user-prosthesis interaction[J]. IEEE transactions on robotics, 2008, 24(1): 170-183.
[31] VASYLKIV Y, NESHATI A, SAKAMOTO Y, et al. Smart home interactions for people with reduced hand mobility using subtle EMG-signal gestures[M]//LAU F, BARTLE-CLAR J A, BLISS G, et al. Improving Usability, Safety and Patient Outcomes with Health Information Technology. Amsterdam: IOS Press, 2019: 436-443.
[32] ZENG Hong, WANG Yanxin, WU Changcheng, et al. Closed-loop hybrid gaze brain-machine interface based robotic arm control with augmented reality feedback[J]. Frontiers in neurorobotics, 2017, 11: 60.
[33] YANG Chenguang, CHANG Sai, LIANG Peidong, et al. Teleoperated robot writing using EMG signals[C]//Proceedings of 2015 IEEE International Conference on Information and Automation. Lijiang, China, 2015: 2264-2269.
[34] 雷煜, 童莉, 李建新, 等. 基于脑功能磁共振影像的视觉信息解读技术[J]. 计算机应用研究, 2013, 30(6): 1611-1616
LEI Yu, TONG Li, LI Jianxin, et al. Functional magnetic resonance imaging “brain reading” of visual information: a review[J]. Application research of computers, 2013, 30(6): 1611-1616
[35] ZOU Chaobin, HUANG Rui, CHENG Hong, et al. Adaptive gait planning for walking assistance lower limb exoskeletons in slope scenarios[C]//Proceedings of 2019 International Conference on Robotics and Automation. Montreal, Canada, 2019: 5083-5089.
[36] CHEN Qiming, CHENG Hong, HUANG Rui, et al. Learning and planning of stair ascent for lower-limb exoskeleton systems[J]. Industrial robot, 2019, 46(3): 421-430.
[37] CHEN Qiming, CHENG Hong, YUE Chunfeng, et al. Dynamic balance gait for walking assistance exoskeleton[J]. Applied bionics and biomechanics, 2018, 2018: 7847014.
[38] DENG Chuanjie, LI Zhijun. Human-guided robotic exoskeleton cooperative walking for climbing stairs[C]//Proceedings of the 2018 3rd International Conference on Advanced Robotics and Mechatronics. Singapore, Singapore, 2018: 60-65.
[39] BORTOLE M, DEL AMA A, ROCON E, et al. A robotic exoskeleton for overground gait rehabilitation[C]//Proceedings of 2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany, 2013: 3356-3361.
[40] UNLUHISARCIKLI O, PIETRUSINSKI M, WEINBERG B, et al. Design and control of a robotic lower extremity exoskeleton for gait rehabilitation[C]//Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, USA, 2011: 4893-4898.
[41] 刘洋, 孙恺. 协作机器人的研究现状与技术发展分析[J]. 北方工业大学学报, 2017, 29(2): 76-85
LIU Yang, SUN Kai. State of the art and future directions of collaborative robot[J]. Journal of North China University of Technology, 2017, 29(2): 76-85
[42] KIMURA H, HORIUCHI T, IKEUCHI K. Task-model based human robot cooperation using vision[C]//Proceedings of 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Kyongju, South Korea, 1999: 701-706.
[43] DARVISH K, BRUNO B, SIMETTI E, et al. An adaptive human-robot cooperation framework for assembly-like tasks[C]//Proceedings of International Conference of the Italian Association for Artificial Intelligence. Genova, Italy, 2016: 45-50.
[44] DARWISH K, WANDERLINGH F, BRUNO B, et al. Flexible human-robot cooperation models for assisted shop-floor tasks[EB/OL]. arXiv: 1707.02591, 2017.
[45] ZHENG Nanning, LIU Ziyi, REN Pengju, et al. Hybrid-augmented intelligence: collaboration and cognition[J]. Frontiers of information technology & electronic engineering, 2017, 18(2): 153-179.
[46] WANG Wei, LIU Yige, REN Pengqing, et al. The characteristics of human-robot coadaptation during human-in-the-loop optimization of exoskeleton control[C]//Proceedings of 2018 IEEE International Conference on Robotics and Biomimetics. Kuala Lumpur, Malaysia, 2018: 1459-1464.
[47] ZHANG Juanjuan, FIERS P, WITTE K A, et al. Human-in-the-loop optimization of exoskeleton assistance during walking[J]. Science, 2017, 365(6344): 1280-1284.
[48] DING Ye, KIM M, KUINDERSMA S, et al. Human-in-the-loop optimization of hip assistance with a soft exosuit during walking[J]. Science robotics, 2018, 3(15): eaar5438.
[49] THATTE N, DUAN Helei, GEYER H. A sample-efficient black-box optimizer to train policies for human-in- the-loop systems with user preferences[J]. IEEE robotics and automation letters, 2017, 2(2): 993-1000.
[50] KIM M, DING Ye, MALCOLM P, et al. Human-in- the-loop Bayesian optimization of wearable device parameters[J]. PLoS one, 2017, 12(9): e0184054.
[51] HUANG Rui, CHENG Hong, CHEN Qiming, et al. Interactive learning for sensitivity factors of a human-powered augmentation lower exoskeleton[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany, 2015: 6409-6415.
[52] HUANG Rui, CHENG Hong, GUO Hongliang, et al. Hierarchical interactive learning for a human-powered augmentation lower exoskeleton[C]//Proceedings of 2016 IEEE International Conference on Robotics and Automation. Stockholm, Sweden, 2016: 257-263.
[53] HUANG Rui, CHENG Hong, GUO Hongliang, et al. Hierarchical learning control with physical human-exoskeleton interaction[J]. Information sciences, 2018, 432: 584-595.
[54] HAMAYA M, MATSUBARA T, NODA T, et al. Learning task-parametrized assistive strategies for exoskeleton robots by multi-task reinforcement learning[C]//Proceedings of 2017 IEEE International Conference on Robotics and Automation. Singapore, Singapore, 2017: 5907-5912.
[55] 张光华, 潘婧. 人工智能技术在医疗领域中的应用[J]. 电子技术与软件工程, 2019(19): 239-240
ZHANG Guanghua, PAN Jing. Artificial intelligent technology and its applications in medicine[J]. Electronic technology & software engineering, 2019(19): 239-240
[56] 郑悦, 景晓蓓, 李光林. 人机智能协同在医疗康复机器人领域的应用[J]. 仪器仪表学报, 2017, 38(10): 2373-2380
ZHENG Yue, JING Xiaobei, LI Guanglin. Application of human-machine intelligence synergy in the field of medical and rehabilitation robot[J]. Chinese journal of scientific instrument, 2017, 38(10): 2373-2380
[57] BOGUE R. Robots in healthcare[J]. Industrial robot, 2011, 38(3): 218-223.
[58] HANLY E J, TALAMINI M A. Robotic abdominal surgery[J]. The American journal of surgery, 2004, 188(4): 19-26.
[59] 张乔冶. 达芬奇手术机器人系统及其应用[J]. 医疗装备, 2016, 29(9): 197-198
ZHANG Qiaozhi. Da Vinci surgical robot system and applications[J]. Medical equipment, 2016, 29(9): 197-198
[60] 肖勇, 孙平范, 陈罡. 康复机器人发展综述[J]. 信息系统工程, 2017(5): 131-133
XIAO Yong, SUN Pingfan, CHEN Gang. Overview of the rehabilitation robots development[J]. Information technology, 2017(5): 131-133
[61] DíAZ I, GIL J J, SáNCHEZ E. Lower-limb robotic rehabilitation: literature review and challenges[J]. Journal of robotics, 2011, 2011: 759764.
[62] ZEILIG G, WEINGARDEN H, ZWECKER M, et al. Safety and tolerance of the ReWalkTM exoskeleton suit for ambulation by people with complete spinal cord injury: a pilot study[J]. Journal of spinal cord medicine, 2012, 35(2): 96-101.
[63] PAN Y T, LAMB Z, MACIEVICH J, et al. A vibrotactile feedback device for balance rehabilitation in the EksoGTTM robotic exoskeleton[C]//Proceedings of the 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics. Enschede, Netherlands, 2018: 569-576.
[64] CHEN S, LI J, SHUAI Mei, et al. First multicenter clinical trial of China’s domestically designed powered exoskeleton-assisted walking in patients with paraplegia[J]. Annals of physical and rehabilitation medicine, 2018, 61S: e495.
[65] HUANG Rui, CHENG Hong, QIU Jing, et al. Learning physical human-robot interaction with coupled cooperative primitives for a lower exoskeleton[J]. IEEE transactions on automation science and engineering, 2019, 16(4): 1566-1574.
[66] HUANG Rui, PENG Zhinan, CHENG Hong, et al. Learning-based walking assistance control strategy for a lower limb exoskeleton with hemiplegia patients[C]//Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid, Spain, 2018: 2280-2285.
[67] NODA T, SUGIMOTO N, FURUKAWA J, et al. Brain- controlled exoskeleton robot for BMI rehabilitation[C]//Proceedings of the 2012 12th IEEE-RAS International Conference on Humanoid Robots. Osaka, Japan, 2012: 21-27.
[68] FLEISCHER C, REINICKE C, HOMMEL G. Predicting the intended motion with EMG signals for an exoskeleton orthosis controller[C]//Proceedings of 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton, Canada, 2005: 2029-2034.
[69] CASTELLINI C, VAN DER SMAGT P. Surface EMG in advanced hand prosthetics[J]. Biological cybernetics, 2009, 100(1): 35-47.
[70] VAN DER NIET OTR O, REINDERS-MESSELINK H A, BONGERS R M, et al. The i-LIMB hand and the DMC plus hand compared: a case report[J]. Prosthetics and orthotics international, 2010, 34(2): 216-220.
[71] BANDARA D S V, GOPURA R A R C, HEMAPALA K T M U, et al. Upper extremity prosthetics: current status, challenges and future directions[C]//Proceedings of the Seventeenth International Symposium on Artificial Life and Robotics. Beppu, Japan, 2012.
[72] LIU Hong, YANG Dapeng, LI Jiang, et al. Development of a multi-DOF prosthetic hand with intrinsic actuation, intuitive control and sensory feedback[J]. Industrial robot, 2014, 41(4): 381-392.
[73] CHEN Zhaopeng, LII N Y, WIMB?CK T, et al. Experimental analysis on spatial and cartesian impedance control for the dexterous DLR/HIT Ⅱ hand[J]. International journal of robotics and automation, 2014, 29(1): 1-13.
[74] BARABáS I, TODORU? A, CORDO? N, et al. Current challenges in autonomous driving[J]. Materials science and engineering, 2017, 252(1): 012096.
[75] 吴超仲, 吴浩然, 吕能超. 人机共驾智能汽车的控制权切换与安全性综述[J]. 交通运输工程学报, 2018, 18(6): 131-141
WU Chaozhong, WU Haoran, LYU Nengchao. Review of control switch and safety of human-computer driving intelligent vehicle[J]. Journal of traffic and transportation engineering, 2018, 18(6): 131-141
[76] YOUNG M S, STANTON N A, HARRIS D. Driving automation: learning from aviation about design philosophies[J]. International journal of vehicle design, 2007, 45(3): 323.
[77] HOC J M, YOUNG M S, BLOSSEVILLE J M. Cooperation between drivers and automation: implications for safety[J]. Theoretical issues in ergonomics science, 2009, 10(2): 135-160.
[78] ALONSO-MORA J, GOHL P, WATSON S, et al. Shared control of autonomous vehicles based on velocity space optimization[C]//Proceedings of 2014 IEEE International Conference on Robotics and Automation. Hong Kong, China, 2014: 1639-1645.
[79] SOUALMI B, SENTOUH C, POPIEUL J C, et al. Automation- driver cooperative driving in presence of undetected obstacles[J]. Control engineering practice, 2014, 24: 106-119.
[80] MORRIS B, DOSHI A, TRIVEDI M. Lane change intent prediction for driver assistance: on-road design and evaluation[C]//Proceedings of 2011 IEEE Intelligent Vehicles Symposium. Baden, Germany, 2011: 895-901.
[81] 崔妍. 人工智能技术在陪护机器人中的应用策略[J]. 数字通信世界, 2019(9): 171
CUI Yan. Application strategy of artificial intelligence technology in escort robot[J]. Digital communication World, 2019(9): 171
[82] 张莉. 服务机器人迎来发展黄金期[J]. 中国对外贸易, 2019(9): 68-69
ZHANG Li. Service robot ushered in a golden period of development[J]. China’s foreign trade, 2019(9): 68-69
[83] 袁政华, 夏雪. 浅析家庭型服务机器人的发展前景[J]. 信息记录材料, 2019, 20(7): 45-46
YUAN Zhenghua, XIA Xue. A brief analysis of the development prospects of family-oriented service robots[J]. Information recording materials, 2019, 20(7): 45-46
[84] KNOX W B, STONE P, BREAZEAL C. Training a robot via human feedback: a case study[C]//Proceedings of the 5th International Conference on Social Robotics. Bristol, UK, 2013: 460-470.
[85] MUKAI T, HIRANO S, NAKASHIMA H, et al. Development of a nursing-care assistant robot RIBA that can lift a human in its arms[C]//Proceedings of 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Taiwan, China, 2010: 5996-6001.
[86] GUIZZO E. How Aldebaran robotics built its friendly humanoid robot, pepper[EB/OL].[2014-12-26]. https://spectrum.ieee.org/robotics/home-robots/how-aldebaran-robotics-built-its-friendly-humanoid-robot-pepper.
[87] 韩晶, 解仑, 刘欣, 等. 基于Gross认知重评的机器人认知情感交互模型[J]. 东南大学学报(自然科学版), 2015, 45(2): 270-274
HAN Jing, XIE Lun, LIU Xin, et al. Cognitive emotion interaction model of robot based on Gross cognitive reappraisal[J]. Journal of Southeast University (Natural Science Edition), 2015, 45(2): 270-274
[88] 黄宏程, 刘宁, 胡敏, 等. 基于博弈的机器人认知情感交互模型[J]. 电子与信息学报, 2019, 41(10): 2471-2478
HUANG Hongcheng, LIU Ning, HU Ming, et al. Cognitive emotion interaction model of robot based on game theory[J]. Journal of electronics & information technology, 2019, 41(10): 2471-2478

备注/Memo

备注/Memo:
收稿日期:2019-12-02。
基金项目:国家重点研发计划项目(2017YFB1302300);国家自然科学基金项目(61603078,61673088)
作者简介:程洪,教授,博士生导师,国家万人计划科技创新领军人才,IEEE高级会员,美国卡内基梅隆大学访问学者,现为电子科技大学机器人研究中心执行主任,电子科技大学人工智能研究院副院长,主要研究方向为人工智能、外骨骼机器人、计算机视觉、智能驾驶。近5年主持国家重点研发计划、国家自然科学基金重点项目、工信部人工智能与实体经济融合创新项目等国家级和省部级项目10余项。申请并授权发明专利60项,16项已转化并实现产业应用。谷歌学术引用2 000次,H因子20。2013年入选Elsevier 2005—2015计算机领域近10年中国作者论文高下载榜单,独著英文专著2部,发表学术论文100余篇;黄瑞,博士后,IEEE会员,主要研究方向为外骨骼机器人、智能控制、强化学习。中国指挥与控制学会优秀博士论文获得者,授权发明专利5项,发表学术论文27篇;邱静,副教授,主要研究方向为外骨骼机器人、人因工程。主持国家重点研发计划子课题、国家自然科学基金和四川省重大专项等国家级和省部级项目5项。授权发明专利19项,发表学术论文20篇
通讯作者:程洪.E-mail:hcheng@uestc.edu.cn
更新日期/Last Update: 1900-01-01