[1]贾鹤鸣,彭晓旭,邢致恺,等.改进萤火虫优化算法的Renyi熵污油图像分割[J].智能系统学报,2020,15(2):367-373.[doi:10.11992/tis.201809002]
 JIA Heming,PENG Xiaoxu,XING Zhikai,et al.Renyi entropy based on improved firefly optimization algorithm for image segmentation of waste oil[J].CAAI Transactions on Intelligent Systems,2020,15(2):367-373.[doi:10.11992/tis.201809002]
点击复制

改进萤火虫优化算法的Renyi熵污油图像分割(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第15卷
期数:
2020年2期
页码:
367-373
栏目:
学术论文—人工智能基础
出版日期:
2020-03-05

文章信息/Info

Title:
Renyi entropy based on improved firefly optimization algorithm for image segmentation of waste oil
作者:
贾鹤鸣1 彭晓旭1 邢致恺12 李金夺1 康立飞1
1. 东北林业大学 机电工程学院, 黑龙江 哈尔滨 150040;
2. 大庆油田有限责任公司采油二厂, 黑龙江 大庆 163000
Author(s):
JIA Heming1 PENG Xiaoxu1 XING Zhikai12 LI Jinduo1 KANG Lifei1
1. College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China;
2. Daqing Oil Field Co. Oil Production Plant Two, Daqing 163000, China
关键词:
污油图像处理阈值分割萤火虫算法二维Renyi熵混沌优化多目标寻优适应度学习全局优化
Keywords:
image processing of waste oilthreshold segmentationfirefly algorithmtwo-dimensional Renyi entropychaos optimizationmulti-objective optimizationfitness learningglobal optimization
分类号:
TP391.41
DOI:
10.11992/tis.201809002
摘要:
针对传统Renyi熵方法在分割污油图像时存在图片差距大、无法根据不同图片进行最优分割的问题,提出改进萤火虫算法对二维Renyi熵分割算法中的α值进行寻优来解决上述问题。分析了采集的污油图片特点以及对污油图片进行分割的必要性;针对多目标寻优精度不高和后期收敛速度较慢的问题,对萤火虫算法进行了改进,并对初始萤火虫位置进行混沌优化处理,使结果达到全局最优;利用基于改进萤火虫算法的Renyi熵图像分割算法对采集的污油图片进行阈值分割实验,并与二维Renyi熵分割、粒子群算法(PSO)Renyi熵分割方法进行比较。实验结果表明:本文提出的算法可以有效地对污油区域进行分割,能够快速地实现复杂图像的精确处理。
Abstract:
Aiming at the problem that the traditional Renyi entropy method has large image gaps and cannot be optimized according to different images when dividing dirty oil images, an improved firefly algorithm is proposed to solve the above problem by optimizing the alpha value of two-dimensional Renyi entropy segmentation algorithm. First, we analyze the characteristics of an acquired oil image and the necessity of segmenting a dirty oil picture; second, aiming at the problems of low optimization precision and slow convergence speed in the later stage, the firefly algorithm is improved to make the initial position of the firefly chaos optimization processing results reach the global optimum, and then Renyi entropy image segmentation algorithm based on the improvement of the firefly algorithm is applied to the experiments of threshold value segmentation of the waste oil image. Finally, the algorithm proposed in this paper is used to collect oil image segmentation in experiments, and the results are compared with the 2D Renyi entropy segmentation and the particle swarm optimization (PSO) Renyi entropy segmentation method. The experimental results illustrate that the proposed algorithm can effectively segment the waste oil area and quickly achieve accurate processing of complex images.

参考文献/References:

[1] 王翔宇, 王跃, 鲍蕊, 等. 基于巡检方案事件检出概率的长距管线无人机总体设计[J]. 航空学报, 2016, 37(1): 193-206
WANG Xiangyu, WANG Yue, BAO Rui, et al. Conceptual design for long-distance pipeline patrolling UVA based on detection probability of patrolling scheme[J]. Acta aeronautica et astronautica sinica, 2016, 37(1): 193-206
[2] 张彪, 杜景涛, 许海银. 基于物联网技术的数字油田三维管线智能巡检系统[J]. 智慧建筑与城市, 2017(9): 50-53
ZHANG Biao, DU Jingtao, XU Haiyin. Intelligent patrol inspection system of digital oilfield based on IOT technology[J]. Intelligent building and city, 2017(9): 50-53
[3] 陈雨, 蒋连江. 石油管线智能巡检系统应用与研究[J]. 石油石化管线与技术, 2009, 3(3): 120-123
[4] 马英辉, 吴一全. 利用混沌布谷鸟优化的二维Renyi灰度熵图像阈值选取[J]. 智能系统学报, 2018, 13(1): 152-158
MA Yinghui, WU Yiquan. Two-dimensional Renyi-gray-entropy image threshold selection based on chaotic cuckoo search optimization[J]. CAAL transactions on intelligent systems, 2018, 13(1): 152-158
[5] 陈超, 宣士斌, 雷红轩. 基于狼群算法与二维最大熵的图像分割[J]. 计算机工程, 2018, 44(1): 233-237
CHEN Chao, XUAN Shibin, LEI Hongxuan. Image segmentation based on wolf pack algorithm and 2D maximum entropy[J]. Computer engineering, 2018, 44(1): 233-237
[6] YANG Xinshe. Nature-inspired metaheuristic algorithms[M]. Frome, UK: Luniver Press, 2008: 180-186.
[7] 刘佳昆, 周永权. 一种最大最小萤光素值人工萤火虫算法[J]. 计算机应用研究, 2011, 28(10): 3662-3664
LIU Jiakun, ZHOU Yongquan. Glowworm swarm optimization algorithm based on max-min luciferin[J]. Application research of computers, 2011, 28(10): 3662-3664
[8] DOS SANTOS COELHO L, DE ANDRADE BERNERT D L, MARIANI V C. A chaotic firefly algorithm applied to reliability-redundancy optimization[C]//Proceedings of 2011 IEEE Congress of Evolutionary Computation. New Orleans, LA, USA, 2011: 517-521.
[9] 冯艳红, 刘建芹, 贺毅朝. 基于混沌理论的动态种群萤火虫算法[J]. 计算机应用, 2013, 33(3): 796-799, 805
FENG Yanhong, LIU Jianqin, HE Yichao. Chaos-based dynamic population firefly algorithm[J]. Journal of computer applications, 2013, 33(3): 796-799, 805
[10] KULKARNI R V, VENAYAGAMOORTHY G K. Bio-inspired algorithms for autonomous deployment and localization of sensor nodes[J]. IEEE transactions on systems, man, and cybernetics, part C (applications and reviews), 2010, 40(6): 663-675.
[11] 刘毅, 黄兵, 孙怀江, 等. 利用视觉显著性与图割的图像分割算法[J]. 计算机辅助设计与图形学学报, 2013, 25(3): 402-409
LIU Yi, HUANG Bing, SUN Huaijiang, et al. Image segmentation based on visual saliency and graph cuts[J]. Journal of computer-aided design & computer graphics, 2013, 25(3): 402-409
[12] 刘洪彬, 常发亮. 权重系数自适应光流法运动目标检测[J]. 光学精密工程, 2016, 24(2): 460-468
LIU Hongbin, CHANG Faliang. Moving object detection by optical flow method based on adaptive weight coefficient[J]. Optics and precision engineering, 2016, 24(2): 460-468
[13] HORNG M H. Vector quantization using the firefly algorithm for image compression[J]. Expert systems with applications, 2012, 39(1): 1078-1091.
[14] 马英辉, 吴一全. 基于改进的指数交叉熵和萤火虫群优化的工业CT图像分割[J]. 图学学报, 2017, 38(1): 57-62
MA Yinghui, WU Yiquan. Segmentation of industrial CT image based on improved exponential cross entropy and glow-worm swarm optimization[J]. Journal of graphics, 2017, 38(1): 57-62
[15] 周晨航, 田力威, 赵宏伟. 基于改进萤火虫算法的二维Otsu图像分割法[J]. 沈阳大学学报(自然科学版), 2016, 28(1): 45-50
ZHOU Chenhang, TIAN Liwei, ZHAO Hongwei. Image thresholding segmentation with 2-D Otsu based on improved firefly algorithm[J]. Journal of Shenyang University (Natural Science), 2016, 28(1): 45-50

相似文献/References:

[1]丁爱玲,杨康,齐怀超,等.单边侧阴影特征的车辆阴影去除[J].智能系统学报,2015,10(02):281.[doi:10.3969/j.issn.1673-4785.201310020]
 DING Ailing,YANG Kang,QI Huaichao,et al.Vehicle shadow removal based on the characteristics of the single side shadow[J].CAAI Transactions on Intelligent Systems,2015,10(2):281.[doi:10.3969/j.issn.1673-4785.201310020]
[2]杨达,狄岚,赵树志,等.基于结构相似性与模板校正的织物瑕疵检测方法[J].智能系统学报,2020,15(3):475.[doi:10.11992/tis.201810011]
 YANG Da,DI Lan,ZHAO Shuzhi,et al.Fabric defect detection based on structural similarity and template correction[J].CAAI Transactions on Intelligent Systems,2020,15(2):475.[doi:10.11992/tis.201810011]

备注/Memo

备注/Memo:
收稿日期:2018-09-01。
基金项目:中央高校基本科研业务费专项资金项目(2572019BF04);国家自然科学基金项目(31470714,51609048);黑龙江省研究生教育创新工程项目(JGXM_HLJ_2016014)
作者简介:贾鹤鸣,副教授,博士,主要研究方向为图像处理与信息检测技术;彭晓旭,硕士研究生,主要研究方向为智能控制与信息处理技术;邢致恺,硕士研究生,主要研究方向为智能控制与信息处理技术。
通讯作者:贾鹤鸣.E-mail:jiaheminglucky99@126.com
更新日期/Last Update: 1900-01-01