[1]李京政,杨习贝,窦慧莉,等.重要度集成的属性约简方法研究[J].智能系统学报,2018,13(3):414-421.[doi:10.11992/tis.201706080]
 LI Jingzheng,YANG Xibei,DOU Huili,et al.Research on ensemble significance based attribute reduction approach[J].CAAI Transactions on Intelligent Systems,,13():414-421.[doi:10.11992/tis.201706080]
点击复制

重要度集成的属性约简方法研究

参考文献/References:
[1] PAWLAK Z. Rough sets:theoretical aspects of reasoning about data[M]. Boston, Mass, USA:Kluwer Academic Publishers, 1991.
[2] PAWLAK Z. Rough sets[J]. International journal of computer & information sciences, 1982, 11(5):341-356.
[3] JU Hengrong, LI Huaxiong, YANG Xibei, et al. Cost-sensitive rough set:a multi-granulation approach[J]. Knowledge-based systems, 2017, 123:137-153, doi:10.1016/j.knosys.2017.02.019.
[4] XU Suping, YANG Xibei, YU Hualong, et al. Multi-label learning with label-specific feature reduction[J]. Knowledge-based systems, 2016, 104:52-61.
[5] DUBOIS D, PRADE H. Rough fuzzy sets and fuzzy rough sets[J]. International journal of general systems, 1990, 17(2/3):191-209.
[6] 胡清华, 于达仁, 谢宗霞. 基于邻域粒化和粗糙逼近的数值属性约简[J]. 软件学报, 2008, 19(3):640-649. HU Qinghua, YU Daren, XIE Zongxia. Numerical attribute reduction based on neighborhood granulation and rough approximation[J]. Journal of software, 2008, 19(3):640-649.
[7] YANG Xibei, CHEN Zehua, DOU Huili, et al. Neighborhood system based rough set:models and attribute reductions[J]. International journal of uncertainty, fuzziness and knowledge-based systems, 2012, 20(3):399-419.
[8] LIANG Jiye, WANG Feng, DANG Chuangyin, et al. An efficient rough feature selection algorithm with a multi-granulation view[J]. International journal of approximate reasoning, 2012, 53(6):912-926.
[9] ZHANG Xiao, MEI Changlin, CHEN Degang, et al. Feature selection in mixed data:a method using a novel fuzzy rough set-based information entropy[J]. Pattern recognition, 2016, 56:1-15.
[10] JU Hengrong, YANG Xibei, YU Hualong, et al. Cost-sensitive rough set approach[J]. Information sciences, 2016, 355-356:282-298.
[11] JIA Xiuyi, LIAO Wenhe, TANG Zhenmin, et al. Minimum cost attribute reduction in decision-theoretic rough set models[J]. Information sciences, 2013, 219:151-167.
[12] YANG Xibei, QI Yunsong, SONG Xiaoning, et al. Test cost sensitive multigranulation rough set:model and minimal cost selection[J]. Information sciences, 2013, 250:184-199.
[13] MIN Fan, HE Huaping, QIAN Yuhua, et al. Test-cost-sensitive attribute reduction[J]. Information sciences, 2011, 181(22):4928-4942.
[14] SONG Jingjing, TSANG E C C, CHEN Degang, et al. Minimal decision cost reduct in fuzzy decision-theoretic rough set model[J]. Knowledge-based systems, 2017, 126:104-112, doi:10.1016/j.knosys.2017.03.013.
[15] 王熙照, 王婷婷, 翟俊海. 基于样例选取的属性约简算法[J]. 计算机研究与发展, 2012, 49(11):2305-2310. WANG Xizhao, WANG Tingting, ZHAI Junhai. An attribute reduction algorithm based on instance selection[J]. Journal of computer research and development, 2012, 49(11):2305-2310.
[16] 杨习贝, 颜旭, 徐苏平, 等. 基于样本选择的启发式属性约简方法研究[J]. 计算机科学, 2016, 43(1):40-43. YANG Xibei, YAN Xu, XU Suping, et al. New heuristic attribute reduction algorithm based on sample selection[J]. Computer science, 2016, 43(1):40-43.
[17] LI Yun, SI J, ZHOU Guojing, et al. FREL:a stable feature selection algorithm[J]. IEEE transactions on neural networks and learning systems, 2014, 26(7):1388-1402.
[18] 周林, 平西建, 徐森, 等. 基于谱聚类的聚类集成算法[J]. 自动化学报, 2012, 38(8):1335-1342. ZHOU Lin, PING Xijian, XU Sen, et al. Cluster ensemble based on spectral clustering[J]. Acta automatica sinica, 2012, 38(8):1335-1342.
[19] YANG Xibei, ZHANG Ming, DOU Huili, et al. Neighborhood systems-based rough sets in incomplete information system[J]. Knowledge-based systems, 2011, 24(6):858-867.
[20] QIAN Yuhua, WANG Qi, CHENG Honghong, et al. Fuzzy-rough feature selection accelerator[J]. Fuzzy sets and systems, 2014, 258:61-78.
[21] LI Jingzheng, YANG Xibei, SONG Xiaoning, et al. Neighborhood attribute reduction:a multi-criterion approach[J]. International journal of machine learning and cybernetics, 2017, doi:10.1007/s13042-017-0758-5.
[22] DEM?AR J. Statistical comparisons of classifiers over multiple data sets[J]. Journal of machine learning research, 2006, 7:1-30.
相似文献/References:
[1]伞 冶,叶玉玲.粗糙集理论及其在智能系统中的应用[J].智能系统学报,2007,2(2):40.
 SAN Ye,YE Yu-ling.Rough set theory and its application in the intelligent systems[J].CAAI Transactions on Intelligent Systems,2007,2():40.
[2]刘三阳 杜喆.一种改进的模糊支持向量机算法[J].智能系统学报,2007,2(3):30.
 LIU San-yang,DU Zhe.An improved fuzzy support vector machine method[J].CAAI Transactions on Intelligent Systems,2007,2():30.
[3]富春岩,葛茂松.一种能够适应概念漂移变化的数据流分类方法[J].智能系统学报,2007,2(4):86.
 FU Chun-yan,GE Mao-song.A data stream classification methods adaptive to concept drift[J].CAAI Transactions on Intelligent Systems,2007,2():86.
[4]马胜蓝,叶东毅.一种带禁忌搜索的粒子并行子群最小约简算法[J].智能系统学报,2011,6(2):132.
 MA Shenglan,YE Dongyi.A minimum reduction algorithm based on parallel particle subswarm optimization with tabu search capability[J].CAAI Transactions on Intelligent Systems,2011,6():132.
[5]杨成东,邓廷权.综合属性选择和删除的属性约简方法[J].智能系统学报,2013,8(2):183.[doi:10.3969/j.issn.1673-4785.201209056]
 YANG Chengdong,DENG Tingquan.An approach to attribute reduction combining attribute selection and deletion[J].CAAI Transactions on Intelligent Systems,2013,8():183.[doi:10.3969/j.issn.1673-4785.201209056]
[6]王定桥,李卫华,杨春燕.从用户需求语句建立问题可拓模型的研究[J].智能系统学报,2015,10(6):865.[doi:10.11992/tis.201507038]
 WANG Dingqiao,LI Weihua,YANG Chunyan.Research on building an extension model from user requirements[J].CAAI Transactions on Intelligent Systems,2015,10():865.[doi:10.11992/tis.201507038]
[7]王晓初,包芳,王士同,等.基于最小最大概率机的迁移学习分类算法[J].智能系统学报,2016,11(1):84.[doi:10.11992/tis.201505024]
 WANG Xiaochu,BAO Fang,WANG Shitong,et al.Transfer learning classification algorithms based on minimax probability machine[J].CAAI Transactions on Intelligent Systems,2016,11():84.[doi:10.11992/tis.201505024]
[8]乔丽娟,徐章艳,谢小军,等.基于知识粒度的不完备决策表的属性约简算法[J].智能系统学报,2016,11(1):129.[doi:10.11992/tis.201506029]
 QIAO Lijuan,XU Zhangyan,XIE Xiaojun,et al.Efficient attribute reduction algorithm for an incomplete decision table based on knowledge granulation[J].CAAI Transactions on Intelligent Systems,2016,11():129.[doi:10.11992/tis.201506029]
[9]刘威,刘尚,周璇.BP神经网络子批量学习方法研究[J].智能系统学报,2016,11(2):226.[doi:10.11992/tis.201509015]
 LIU Wei,LIU Shang,ZHOU Xuan.Subbatch learning method for BP neural networks[J].CAAI Transactions on Intelligent Systems,2016,11():226.[doi:10.11992/tis.201509015]
[10]李海林,梁叶.分段聚合近似和数值导数的动态时间弯曲方法[J].智能系统学报,2016,11(2):249.[doi:10.11992/tis.201507064]
 LI Hailin,LIANG Ye.Dynamic time warping based on piecewise aggregate approximation and data derivatives[J].CAAI Transactions on Intelligent Systems,2016,11():249.[doi:10.11992/tis.201507064]

备注/Memo

收稿日期:2017-06-24。
基金项目:国家自然科学基金项目(61572242,61503160,61502211);江苏省高校哲学社会科学基金项目(2015SJD769);中国博士后科学基金项目(2014M550293).
作者简介:李京政,男,1993年生,硕士研究生,主要研究方向为粗糙集理论、机器学习;杨习贝,男,1980年生,副教授,博士后,主要研究方向为粗糙集理论、粒计算、机器学习。发表学术论文100余篇,被SCI检索50余篇,出版英文专著一部;窦慧莉,女,1980年生,助理研究员,主要研究方向为粒计算、智能信息处理。
通讯作者:杨习贝.E-mail:zhenjiangyangxibei@163.com.

更新日期/Last Update: 2018-06-25
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134