[1]任晓霞,孙秀明,耿鹏,等.多小波和NSDFB组合域递归滤波多聚焦图像融合[J].智能系统学报编辑部,2016,(2):241-248.[doi:10.11992/tis.201509017]
 REN Xiaoxia,SUN Xiuming,GENG Peng,et al.Multifocus image fusion using a recursive filter in the combined domain of multiwavelets and NSDFB[J].CAAI Transactions on Intelligent Systems,2016,(2):241-248.[doi:10.11992/tis.201509017]
点击复制

多小波和NSDFB组合域递归滤波多聚焦图像融合(/HTML)
分享到:

《智能系统学报》编辑部[ISSN:1673-4785/CN:23-1538/TP]

卷:
期数:
2016年2期
页码:
241-248
栏目:
出版日期:
2016-04-25

文章信息/Info

Title:
Multifocus image fusion using a recursive filter in the combined domain of multiwavelets and NSDFB
作者:
任晓霞1 孙秀明1 耿鹏2 苏醒2
1. 张家口学院 理学系, 河北 张家口 075000;
2. 石家庄铁道大学 信息科学与技术学院, 河北 石家庄 050043
Author(s):
REN Xiaoxia1 SUN Xiuming1 GENG Peng2 SU Xing2
1. Science department, Zhangjiakou University, Zhangjiakou 075000, China;
2. School of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
关键词:
图像处理图像融合递归滤波改进空间频率多小波
Keywords:
image processingimage fusionrecursive filtermodified spatial frequencymultiwavelett
分类号:
TP391
DOI:
10.11992/tis.201509017
摘要:
多小波能同时满足正交、紧支、对称等对信号处理十分重要的特性,结合多小波变换的多尺度特点和非子采样方向滤波器组变换的多方向性,提出了一种新的基于多小波和非子采样方向滤波器组的多尺度多方向变换。对于高频系数首先计算其修改空间频率,然后利用域变换递归滤波进行滤波的融合规则;低频系数采用了修改拉普拉斯能量和的(SML)融合规则。通过与其他融合方法进行实验对比,实验结果表明:本文提出的融合方法能够更加有效地选择源图像中的聚焦良好区域,并且引入的伪影信息较少;此外,与其他融合方法相比本文方法的客观评价结果也是最好的。
Abstract:
The multiwavelet transform has properties of orthogonality, tight frame, and symmetry, which are vital to signal processing. In this study, a new transform, called as MNSDFB, is proposed by combining the multi-wavelet and nonsubsampled directional filter banks. The domain transform recursive filter is adopted to fuse the filters after the spatial frequency of the high frequency coefficient is calculated. The modified sum-modified-Laplacian (SML) is employed in the low pass subbands as a focus measurement to select fused coefficients. The presented fusion rule in the high pass subband can distinguish the focused regions from the blurred regions. The proposed fusion method was compared with three other fusion methods. The experimental results demonstrate that the proposed fusion method can select the focused regions while introducing few artifacts into the final merged image. Furthermore, its objective criteria, such as MI and QAB/F, are better than those of the other three methods.

参考文献/References:

[1] BAI Xiangzhi, ZHANG Yu, ZHOU Fugen, et al. Quadtree-based multi-focus image fusion using a weighted focus-measure[J]. Information fusion, 2015, 22: 105-118.
[2] 许良凤, 林辉, 胡敏. 基于差分进化算法的多模态医学图像融合[J]. 电子测量与仪器学, 2013, 27(2): 110-114.XU Liangfeng, LIN Hui, HU Min. Multi-modality medicine image fusion based on differential evolution algorithm[J]. Journal of electronic measurement and instrument, 2013, 27(2): 110-114.
[3] 李华锋, 柴毅, 张晓阳. 提升静态小波域内多聚焦图像融合算法[J]. 光电工程, 2011, 38(3): 131-137, 144.LI Huafeng, CHAI Yi, ZHANG Xiaoyang. Multi-focus image fusion algorithm in lifting stationary wavelet domain[J]. Opto-electronic engineering, 2011, 38(3): 131-137, 144.
[4] LIU Xuan, ZHOU Yue, WANG Jiajun. Image fusion based on shearlet transform and regional features[J]. AEU-international journal of electronics and communications, 2013, 68(6): 471-477.
[5] 苗启广, 王宝树. 基于小波变换与局部能量的多聚焦图像融合[J]. 计算机科学, 2005, 32(2): 229-232.MIAO Qiguang, WANG Baoshu. Multi-focus image fusion based on wavelet transform and local energy[J]. Computer science, 2005, 32(2): 229-232.
[6] 宗思光, 王江安. 多尺度形态算子融合图像滤波技术及滤波质量评价[J]. 光学学报, 2005, 25(9): 1176-1180.ZONG Siguang, WANG Jiang’an. Multi-scale mathematical morphology fusion filtering and the evaluation of the filtered image[J]. Acta optica sinica, 2005, 25(9): 1176-1180.
[7] WANG Zhihui, ZHAO Baojun, SHEN Tingzhi. Image fusion based on multiwavelet transformation and PCNN[J]. Journal of information & computational science, 2008, 5(3): 1397-1406.
[8] 朱四荣, 王迎春. 基于多小波变换的多聚焦图像融合[J]. 计算机工程与应用, 2010, 46(6): 169-170, 226. ZHU Sirong, WANG Yingchun. Multi-focus image fusion method based on multi-wavelet transform[J]. Computer engineering and applications, 2010, 46(6): 169-170, 226.
[9] DA CUNHA A L, ZHOU Jianping, DO M N. The nonsubsampled contourlet transform: Theory, design, and applications[J]. IEEE transactions on image processing, 2006, 15(10): 3089-3101.
[10] 米德伶, 冯鹏, 魏彪, 等. 一种基于清晰度计算的NSCT域多聚焦图像融合算法[J]. 光学与光电技术, 2010, 8(2): 7-10. MI Deling, FENG Peng, WEI Biao, et al. A multi-focus image fusion algorithm based on the calculation of clarity in NSCT domain[J]. Optics & optoelectronic technology, 2010, 8(2): 7-10.
[11] GASTAL E S L, OLIVEIRA M M. Domain transform for edge-aware image and video processing[J]. ACM transactions on graphics, 2011, 30(4): 69.
[12] GENG Peng, HUANG Min, LIU Shuaiqi, et al. Multifocus image fusion method of Ripplet transform based on cycle spinning[J]. Multimedia tools and applications, 2014: 1-11, doi: 10.1007/s11042-014-1942-1.
[13] 屈小波, 闫敬文, 杨贵德. 改进拉普拉斯能量和的尖锐频率局部化Contourlet域多聚焦图像融合方法[J]. 光学精密工程, 2009, 17(5): 1203-1212.QU Xiaobo, YAN Jingwen, YANG Guide. Multifocus image fusion method of sharp frequency localized Contourlet transform domain based on sum-modified-Laplacian[J]. Optics and precision engineering, 2009, 17(5): 1203-1212.
[14] DAS S, KUNDU M K. NSCT-based multimodal medical image fusion using pulse-coupled neural network and modified spatial frequency[J]. Medical & biological engineering & computing, 2012, 50(10): 1105-1114.
[15] KUMAR B K S. Image fusion based on pixel significance using cross bilateral filter[J]. Signal, image and video processing, 2015, 9(5): 1193-1204.
[16] GANGAPURE V N, BANERJEE S, CHOWDHURY A S. Steerable local frequency based multispectral multifocus image fusion[J]. Information fusion, 2015, 23: 99-115.
[17] 李俊峰, 姜晓丽, 戴文战. 基于提升小波变换的医学图像融合[J]. 中国图象图形学报, 2014, 19(11): 1639-1648. LI Junfeng, JIANG Xiaoli, DAI Wenzhan. Medical image fusion based on lifting wavelet transform[J]. Journal of image and graphics, 2014, 19(11): 1639-1648.
[18] 高继森, 董亚楠, 沈瑜, 等. 基于改进Tetrolet变换的图像融合算法研究[J]. 计算机科学, 2015, 42(5): 320-323.GAO Jisen, DONG Yanan, SHEN Yu, et al. Research of image fusion algorithm based on improved Tetrolet transform[J]. Computer science, 2015, 42(5): 320-323.
[19] WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE transactions on image processing, 2004, 13(4): 600-612.
[20] SHEIKH H R, BOVIK A C. Image information and visual quality[J]. IEEE transactions on image processing, 2006, 15(2): 430-444.

相似文献/References:

[1]李庆武,蔡艳梅,徐立中.基于分块分类的智能视频监控背景更新算法[J].智能系统学报编辑部,2010,(03):272.
 LI Qing-wu,CAI Yan-mei,XU Li-zhong.Background update algorithm based on blocks classification forintelligent video surveillance[J].CAAI Transactions on Intelligent Systems,2010,(2):272.
[2]邵真天,袁杰.一种基于曲波变换的图像去块算法[J].智能系统学报编辑部,2012,(02):102.
 SHAO Zhentian,YUAN Jie.An image deblocking algorithm based on curvelet transformation[J].CAAI Transactions on Intelligent Systems,2012,(2):102.
[3]王锦榕,袁学海,刘增良.基于图像处理技术的瞳孔和角膜反射中心提取算法[J].智能系统学报编辑部,2012,(05):423.
 WANG Jinrong,YUAN Xuehai,LIU Zengliang.An extraction method of pupil and corneal reflection centers based on image processing technology[J].CAAI Transactions on Intelligent Systems,2012,(2):423.
[4]李洋,焦淑红,孙新童.基于IHS和小波变换的可见光与红外图像融合[J].智能系统学报编辑部,2012,(06):554.
 LI Yang,JIAO Shuhong,SUN Xintong.Fusion of visual and infrared images based on IHS and wavelet transforms[J].CAAI Transactions on Intelligent Systems,2012,(2):554.
[5]傅博,姜勇,王洪光,等.输电线路巡检图像智能诊断系统[J].智能系统学报编辑部,2016,(1):70.[doi:10.11992/tis.201503043]
 FU Bo,JIANG Yong,WANG Hongguang,et al.Intelligent diagnosis system for patrol check images of power transmission lines[J].CAAI Transactions on Intelligent Systems,2016,(2):70.[doi:10.11992/tis.201503043]
[6]梁义辉,战强.一种面向无线图像传输的视觉平台[J].智能系统学报编辑部,2016,(5):608.[doi:10.11992/tis.201512014]
 LIANG Yihui,ZHAN Qiang.A visual platform for wireless image transmission[J].CAAI Transactions on Intelligent Systems,2016,(2):608.[doi:10.11992/tis.201512014]
[7]李霞丽,吴立成,樊艳明.易于硬件实现的压缩感知观测矩阵的研究与构造[J].智能系统学报编辑部,2017,(03):279.[doi:10.11992/tis.201606037]
 LI Xiali,WU Licheng,FAN Yanming.Study and construction of a compressed sensing measurement matrix that is easy to implement in hardware[J].CAAI Transactions on Intelligent Systems,2017,(2):279.[doi:10.11992/tis.201606037]
[8]姜婷,袭肖明,岳厚光.基于分布先验的半监督FCM的肺结节分类[J].智能系统学报编辑部,2017,(05):729.[doi:10.11992/tis.201706018]
 JIANG Ting,XI Xiaoming,YUE Houguang.Classification of pulmonary nodules by semi-supervised FCM based on prior distribution[J].CAAI Transactions on Intelligent Systems,2017,(2):729.[doi:10.11992/tis.201706018]
[9]王科俊,赵彦东,邢向磊.深度学习在无人驾驶汽车领域应用的研究进展[J].智能系统学报编辑部,2018,(01):55.[doi:10.11992/tis.201609029]
 WANG Kejun,ZHAO Yandong,XING Xianglei.Deep learning in driverless vehicles[J].CAAI Transactions on Intelligent Systems,2018,(2):55.[doi:10.11992/tis.201609029]

备注/Memo

备注/Memo:
收稿日期:2015-9-9;改回日期:。
基金项目:河北省自然科学基金项目(F2013210094,F2013210109).
作者简介:任晓霞,女,1982年生,讲师,主要研究方向为计算机技术、图形图像技术;孙秀明,男,1978年生,副教授,主要研究方向为图像去噪、图像融合以及为数字化资源开发;耿鹏,男,1979年生,副教授,主要研究方向为图像融合、小波分析。主持河北省自然科学基金项目、河北省教育厅高等学校科学研究项目等多项,发表学术论文多篇,其中被SCI检索4篇,被EI检索6篇。
通讯作者:耿鹏.E-mail:Gengpeng@stdu.edu.cn.
更新日期/Last Update: 1900-01-01