[1]李庆武,蔡艳梅,徐立中.基于分块分类的智能视频监控背景更新算法[J].智能系统学报,2010,5(03):272-276.
 LI Qing-wu,CAI Yan-mei,XU Li-zhong.Background update algorithm based on blocks classification forintelligent video surveillance[J].CAAI Transactions on Intelligent Systems,2010,5(03):272-276.
点击复制

基于分块分类的智能视频监控背景更新算法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第5卷
期数:
2010年03期
页码:
272-276
栏目:
出版日期:
2010-06-25

文章信息/Info

Title:
Background update algorithm based on blocks classification forintelligent video surveillance
文章编号:
1673-4785(2010)03-0272-05
作者:
李庆武蔡艳梅徐立中
河海大学 计算机及信息工程学院,江苏 常州 213022
Author(s):
LI Qing-wu CAI Yan-mei XU Li-zhong
College of Computer and Information Engineering, Hohai University, Changzhou 213022, China
关键词:
图像处理智能视频监控背景差分分块背景更新
Keywords:
image processing intelligent video surveillance background subtraction blocks classification background update
分类号:
TP391.4;TN991.73
文献标志码:
A
摘要:
针对传统智能视频监控中背景更新算法计算量大、对光照变化敏感等问题,提出了一种基于分块分类的背景更新算法.首先,根据视频序列获得初始的背景参考图像,采用背景差分法得到当前帧的差分图像.然后,将差分图像采用分块处理,按照子块的均值特征对各子块图像进行前景块和背景块的分类.最后,根据分类情况采用不同的背景更新策略,实现背景的实时更新.该算法以块为操作对象,相比单个像素处理时的计算量更小,运算速度更快.实验结果表明,新算法能较好地适应光照变化,背景更新效果较好.
Abstract:
Background update algorithms have excessive calculation overhead and are sensitive to changes in lighting. In order to solve these problems, a background update algorithm based on block classification was proposed. First, image differences were obtained by subtracting the incoming frame from the reference image. Then the image differences were divided into blocks of equal size. Each block was then classified as a background block or a foreground block according to the blocks’ predominant features. Different updating strategies were then employed according to the classification of the block. In this way, realtime background updates were possible. This algorithm overcame problems of computational redundancy arising in other pixelbackground models. Execution speed was improved because objectoperations were performed on every block. Experimental results showed that this method well adapts to changes in illumination. 

参考文献/References:

[1]VALERA M, VELASTIN S A. Intelligent distributed surveillance systems: a review[J]. Image and Signal Processing, 2005, 152(2): 192204.
[2]HARITAOGLU I, HARWOOD D, DAVIS L S. Realtime surveillance of people and their activities[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 809830.
[3]杜友田,陈峰,徐文立,等. 基于视觉的人的运动识别综述[J]. 电子学报, 2007, 35(1): 8490.
DU Youtian, CHEN Feng, XU Wenli, et al. A survey on the visionbased human motion recognition[J]. Acta Electronica Sinica, 2007, 35(1): 8490. 
[4]李庆武,许和英,陈小刚,等. 基于USB2.0的智能视频监控系统设计[J]. 光学技术, 2007, 33(S1): 2224.
 LI Qingwu, XU Heying, CHEN Xiaogang, et al. Design of intelligent video monitoring system based on USB 2.0[J]. Optical Technique, 2007, 33(S1): 2224.
[5]魏志强,纪筱鹏,冯业伟. 基于自适应背景图像更新的运动目标检测方法[J]. 电子学报, 2005, 33(12): 22612264.
WEI Zhiqiang, JI Xiaopeng, FENG Yewei. A moving object detection method based on selfadaptive updating of background[J]. Acta Electronica Sinica, 2005, 33(12): 22612264.
[6]张洪斌, 黄山. 面向实时交通视觉监控的综合动态背景更新方法[J].计算机应用, 2007, 27(9): 21342136.
ZHANG Hongbin, HUANG Shan. Comprehensive dynamic background updating method for realtime traffic visual surveillance[J]. Journal of Computer Applications, 2007, 27(9): 21342136.
[7]汪冲,席志红,肖春丽.基于背景差分的运动目标检测方法[J].应用科技, 2009, 36(10): 1618, 30.
WANG Chong,XI Zhihong,XIAO Chunli.Moving objects detection based on background subtraction method[J].Applied Science and Technology, 2009, 36(10): 1618, 30.
[8]GUPTE S, MASOUD O, MARTIN R F K, et al. Detection and classification of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2002, 3(1): 3747.
[9]MESSELODI S, MODENA C M, SEGATA N, et al. A Kalman filter based background updating algorithm robust to sharp illumination changes[J]. Lecture Notes in Computer Science, 2005, 3167: 163170.
[10]曹丹华, 邹伟, 吴裕斌. 基于背景图像差分的运动人体检测[J]. 光电工程, 2007, 34(6): 107111.
CAO Danhua, ZOU Wei, WU Yubin. Motion human detection based on difference background image[J]. OptoElectronic Engineering, 2007, 34(6): 107111.
[11]STAUFFER C, GRIMSON W E L. Adaptive background mixture models for realtime tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Fort Collins, USA, 1999, 2(6): 246252.
[12]杨广林, 孔令富. 基于图像分块的背景模型构建方法[J]. 机器人, 2007, 29(1): 2934.
YANG Guanglin, KONG Lingfu. Approach of constructing background model based on image blocks[J]. Robot, 2007, 29(1): 2934.
[13]李强, 赵亦工, 高永晶. 基于背景差分的动目标检测算法研究[J]. 遥测遥控, 2007, 28(6): 6872.
LI Qiang, ZHAO Yigong, GAO Yongjing. Moving object detection algorithm based on background difference[J]. Journal of Telemetry, Tracking and Command, 2007, 28(6): 6872.
[14]于学汉. 概率论与数理统计教程[M]. 北京: 兵器工业出版社, 1996: 149.

相似文献/References:

[1]邵真天,袁杰.一种基于曲波变换的图像去块算法[J].智能系统学报,2012,7(02):102.
 SHAO Zhentian,YUAN Jie.An image deblocking algorithm based on curvelet transformation[J].CAAI Transactions on Intelligent Systems,2012,7(03):102.
[2]王锦榕,袁学海,刘增良.基于图像处理技术的瞳孔和角膜反射中心提取算法[J].智能系统学报,2012,7(05):423.
 WANG Jinrong,YUAN Xuehai,LIU Zengliang.An extraction method of pupil and corneal reflection centers based on image processing technology[J].CAAI Transactions on Intelligent Systems,2012,7(03):423.
[3]梅雪,胡石,许松松,等.基于多尺度特征的双层隐马尔可夫模型及其在行为识别中的应用[J].智能系统学报,2012,7(06):512.
 MEI Xue,HU Shi,XU Songsong,et al.Multi scale feature based double layer HMM and its application in behavior recognition[J].CAAI Transactions on Intelligent Systems,2012,7(03):512.
[4]傅博,姜勇,王洪光,等.输电线路巡检图像智能诊断系统[J].智能系统学报,2016,11(1):70.[doi:10.11992/tis.201503043]
 FU Bo,JIANG Yong,WANG Hongguang,et al.Intelligent diagnosis system for patrol check images of power transmission lines[J].CAAI Transactions on Intelligent Systems,2016,11(03):70.[doi:10.11992/tis.201503043]
[5]任晓霞,孙秀明,耿鹏,等.多小波和NSDFB组合域递归滤波多聚焦图像融合[J].智能系统学报,2016,11(2):241.[doi:10.11992/tis.201509017]
 REN Xiaoxia,SUN Xiuming,GENG Peng,et al.Multifocus image fusion using a recursive filter in the combined domain of multiwavelets and NSDFB[J].CAAI Transactions on Intelligent Systems,2016,11(03):241.[doi:10.11992/tis.201509017]
[6]梁义辉,战强.一种面向无线图像传输的视觉平台[J].智能系统学报,2016,11(5):608.[doi:10.11992/tis.201512014]
 LIANG Yihui,ZHAN Qiang.A visual platform for wireless image transmission[J].CAAI Transactions on Intelligent Systems,2016,11(03):608.[doi:10.11992/tis.201512014]
[7]李霞丽,吴立成,樊艳明.易于硬件实现的压缩感知观测矩阵的研究与构造[J].智能系统学报,2017,12(03):279.[doi:10.11992/tis.201606037]
 LI Xiali,WU Licheng,FAN Yanming.Study and construction of a compressed sensing measurement matrix that is easy to implement in hardware[J].CAAI Transactions on Intelligent Systems,2017,12(03):279.[doi:10.11992/tis.201606037]
[8]姜婷,袭肖明,岳厚光.基于分布先验的半监督FCM的肺结节分类[J].智能系统学报,2017,12(05):729.[doi:10.11992/tis.201706018]
 JIANG Ting,XI Xiaoming,YUE Houguang.Classification of pulmonary nodules by semi-supervised FCM based on prior distribution[J].CAAI Transactions on Intelligent Systems,2017,12(03):729.[doi:10.11992/tis.201706018]
[9]王科俊,赵彦东,邢向磊.深度学习在无人驾驶汽车领域应用的研究进展[J].智能系统学报,2018,13(01):55.[doi:10.11992/tis.201609029]
 WANG Kejun,ZHAO Yandong,XING Xianglei.Deep learning in driverless vehicles[J].CAAI Transactions on Intelligent Systems,2018,13(03):55.[doi:10.11992/tis.201609029]

备注/Memo

备注/Memo:
收稿日期:2009-02-11.
基金项目:国家自然科学基金资助项目(60972101);国家“863”计划资助项目(2007AA11Z227);江苏省社会发展科技项目(BS2007058).
通信作者:李庆武.E-mail:li_qingwu@163.com.
作者简介:
李庆武,男,1964年生,教授、博士生导师、博士,中国光学学会光电技术专业委员会委员,中国电子学会高级会员.主要研究方向为数字图像处理、智能信息系统.主持和参与国家和省部级科技计划项目6项,发表学术论文50余篇.
蔡艳梅,女,1981年生,硕士研究生,主要研究方向为数字图像处理.
徐立中,男,1958年生,教授、博士生导师、博士,主要研究方向为信息获取与处理、遥测遥控、智能信息系统.主持和完成国家和省部级科技计划项目9项,发表学术论文100余篇,出版专著4部.
更新日期/Last Update: 2010-07-14